Name
*
Code
{"properties":{"frame":15348,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_FPS","versions":{"polygonjs":"1.4.10"}},"root":{"type":"root","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","nodes":{"events1":{"type":"eventsNetwork","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[4.178788864509418,-1.8203153825744804,-3.812187664346361]}}}}},"params":{"t":[3.0161526633531355,1.1787657307191874,2.814738208647524],"r":[-22.723127930556515,44.66532130223666,16.403892417511617],"controls":"./events1/cameraOrbitControls1"},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/textures/piz_compressed.exr"}},"imageUv":{"type":"image","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/textures/uv.jpg","tflipY":true}}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"skyColor":[0.8745098039215686,0.9450980392156862,0.9411764705882353],"intensity":0.3}},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"],"flags":{"display":true}},"polarTransform1":{"type":"polarTransform","params":{"center":[6.2,0,0],"longitude":-50.4,"latitude":46.8,"depth":14},"inputs":["spotLight1"]},"spotLight1":{"type":"spotLight","params":{"color":[0.9411764705882353,0.9607843137254902,0.8],"intensity":1.3,"penumbra":0.22,"decay":0.1,"castShadow":true,"shadowBias":0}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"stairs":{"type":"geo","nodes":{"BVH1":{"type":"BVH","params":{"maxDepth":12},"inputs":["normals2"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandardBuilder1":{"type":"meshStandardBuilder","nodes":{"checkers1":{"type":"checkers","params":{"uv":{"overriden_options":{}},"freq":{"overriden_options":{}},"freqMult":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"uv","node":"floatToVec2_1","output":"vec2"}]},"constant1":{"type":"constant","params":{"type":4,"color":[0.807843137254902,0.49019607843137253,0.8509803921568627],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec4ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec4ToFloat1","output":"z"}]},"globals1":{"type":"globals"},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"value0","node":"constant1","output":"val"},{"index":1,"inputName":"value1","node":"multScalar1","output":"val"},{"index":2,"inputName":"blend","node":"checkers1","output":"checker"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"multScalar1":{"type":"multScalar","params":{"value":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true},"raw_input":0.79}},"inputs":[{"index":0,"inputName":"value","node":"constant1","output":"val"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"mult","type":"float"}],"out":[{"name":"val","type":"vec3"}]}},"output1":{"type":"output","inputs":[null,null,{"index":2,"inputName":"color","node":"mix1","output":"mix"}]},"vec4ToFloat1":{"type":"vec4ToFloat","params":{"vec":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec","node":"globals1","output":"worldPosition"}]}},"params":{"roughness":0.7},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-main","type":"MeshStandardMaterial","name":"/stairs/MAT/meshStandardBuilder1","color":16711422,"roughness":0.7,"metalness":0,"emissive":0,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}},"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"globals1":{"type":"globals"}},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","name":"/stairs/MAT/meshLambertBuilder_INSTANCES","color":16711422,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"box1":{"type":"box","params":{"sizes":[0.3,0.1,1.4000000000000001],"center":[0,0,0.7000000000000001]}},"box2":{"type":"box","params":{"sizes":[0.1,0.6,0.1],"center":[0,0.3,1.4500000000000002]}},"copy1":{"type":"copy","params":{"count":"5*(1+copy('../copy2'))","t":[0,0.09,0],"r":[0,9.6,0]},"inputs":["merge2"]},"copy2":{"type":"copy","params":{"count":13,"t":[2.9076227305223816,0,0]},"inputs":["copy1"]},"material1":{"type":"material","params":{"group":"*","material":"../MAT/meshStandardBuilder1"},"inputs":["merge1"]},"merge1":{"type":"merge","params":{"compact":1,"preserveMaterials":0,"inputsCount":3},"maxInputsCount":3,"inputs":["noise1","copy2"]},"merge2":{"type":"merge","params":{"compact":true},"inputs":["box1","box2"]},"plane1":{"type":"plane","params":{"size":[133,57],"stepSize":0.68066}},"noise1":{"type":"noise","params":{"freq":[0.03999999999999998,0.03999999999999998,0.03999999999999998],"useNormals":1},"inputs":["plane1"],"flags":{"bypass":true}},"scatter1":{"type":"scatter","params":{"pointsCount":10,"seed":36},"inputs":["noise1"]},"copy3":{"type":"copy","params":{"transformMode":0},"inputs":["normals1","scatter1"]},"fileGLTF1":{"type":"fileGLTF","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/flamingo.glb"}},"hierarchy1":{"type":"hierarchy","params":{"mode":1},"inputs":["transform1"]},"merge3":{"type":"merge","params":{"compact":1,"preserveMaterials":0},"inputs":["copy3"]},"transform1":{"type":"transform","params":{"scale":0.17},"inputs":["fileGLTF1"]},"BVHVisualizer1":{"type":"BVHVisualizer","inputs":["BVH1"]},"attribDelete1":{"type":"attribDelete","params":{"name":"*colo* *uv*"},"inputs":["merge3"]},"normals2":{"type":"normals","inputs":["merge5"]},"CADExtrude1":{"type":"CADExtrude"},"merge4":{"type":"merge","params":{"compact":1,"preserveMaterials":0},"inputs":["merge1"],"flags":{"bypass":true}},"attribDelete2":{"type":"attribDelete","params":{"name":"co* "},"inputs":["merge4"]},"hierarchy2":{"type":"hierarchy","params":{"mode":1},"inputs":["merge4"]},"merge5":{"type":"merge","params":{"compact":1,"preserveMaterials":0},"inputs":["attribDelete1","attribDelete3"]},"merge6":{"type":"merge","inputs":["material1","merge3","actor1"],"flags":{"display":true}},"attribDelete3":{"type":"attribDelete","params":{"name":"*colo* *uv*"},"inputs":["merge1"]},"normals1":{"type":"normals","inputs":["hierarchy1"]},"scatter2":{"type":"scatter","params":{"pointsCount":10,"seed":26},"inputs":["noise1"]},"fileGLTF2":{"type":"fileGLTF","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/flamingo.glb"}},"hierarchy3":{"type":"hierarchy","params":{"mode":1},"inputs":["fileGLTF2"]},"transform2":{"type":"transform","params":{"scale":0.09},"inputs":["normals4"]},"normals3":{"type":"normals","inputs":["delete1"],"flags":{"bypass":true}},"delete1":{"type":"delete","params":{"class":2,"keepPoints":1},"inputs":["hierarchy3"],"flags":{"bypass":true}},"normalsHelper1":{"type":"normalsHelper","params":{"size":12.9},"inputs":["scatter2"]},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["transform2","scatter2"]},"normals4":{"type":"normals","inputs":["hierarchy3"]},"actor1":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"setObjectPosition1":{"type":"setObjectPosition","params":{"position":{"overriden_options":{}},"lerp":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":5,"inputs":[null,null,{"index":2,"inputName":"position","node":"floatToVec3_1","output":"vec3"}]},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,{"index":1,"inputName":"y","node":"sin1","output":"sin"}]},"sin1":{"type":"sin","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"onTick1","output":"time"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"sin","type":"float","isArray":false}]}},"setObjectLookAt1":{"type":"setObjectLookAt","params":{"targetPosition":{"overriden_options":{}},"up":{"overriden_options":{}},"lerp":{"raw_input":0.09,"overriden_options":{}},"invertDirection":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":7,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"targetPosition","node":"getObjectWorldPosition1","output":"worldPosition"}]},"getObjectWorldPosition1":{"type":"getObjectWorldPosition","inputs":[{"index":0,"inputName":"Object3D","node":"getObject1","output":"Object3D"}]},"getObject1":{"type":"getObject","params":{"getCurrentObject":0,"mask":" /cameras/cameras:sopGroup/perspectiveCamera_FPS /cameras/cameras:sopGroup /cameras"},"maxInputsCount":2},"getObject2":{"type":"getObject","params":{"getCurrentObject":0,"mask":" /cameras/cameras:sopGroup/perspectiveCamera_FPS /cameras/cameras:sopGroup /cameras /perspectiveCamera1"},"maxInputsCount":2}},"inputs":["copy4"],"persisted_config":{"variableNames":["v_POLY_getObjectWorldPosition1_worldPosition","_setObjectLookAt1_targetPosition","_setObjectLookAt1_up"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["getObject","getObjectWorldPosition","setObjectLookAt"],"serializedParamConfigs":[],"eventDatas":[]}},"copy4":{"type":"copy","inputs":["transform2","scatter2"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"cameraControls1":{"type":"cameraControls","nodes":{"firstPersonControls1":{"type":"firstPersonControls","params":{"colliderObject":"../../../stairs/BVH1","translateSpeed":2.3,"jumpStrength":16,"runSpeedMult":2.7,"startPosition":[3,5.4,3.8000000000000003],"startRotation":[0,-45,0]}}},"params":{"node":"firstPersonControls1"},"inputs":["perspectiveCamera_FPS"]},"perspectiveCamera_FPS":{"type":"perspectiveCamera"},"cameraWebXRVR1":{"type":"cameraWebXRVR","inputs":["cameraControls1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_FPS"}},"ui":{"nodes":{"perspectiveCamera1":{"pos":[150,100],"nodes":{"events1":{"pos":[-200,50],"nodes":{"cameraOrbitControls1":{"pos":[150,50]}}}}},"COP":{"pos":[150,200],"nodes":{"envMap":{"pos":[50,200]},"imageEnv":{"pos":[50,100]},"imageUv":{"pos":[-100,100]}}},"lights":{"pos":[150,-100],"nodes":{"hemisphereLight1":{"pos":[-250,0]},"merge1":{"pos":[-150,400]},"polarTransform1":{"pos":[50,200]},"spotLight1":{"pos":[50,0]}}},"stairs":{"pos":[150,-200],"selection":["actor1"],"nodes":{"BVH1":{"pos":[-750,1800]},"MAT":{"pos":[-200,850],"selection":["meshLambertBuilder_INSTANCES"],"nodes":{"meshStandardBuilder1":{"pos":[0,200],"selection":["checkers1"],"nodes":{"checkers1":{"pos":[-50,150]},"constant1":{"pos":[-100,-300]},"floatToVec2_1":{"pos":[-300,200]},"globals1":{"pos":[-600,50]},"mix1":{"pos":[200,-250]},"multScalar1":{"pos":[0,-150]},"output1":{"pos":[400,-150]},"vec4ToFloat1":{"pos":[-450,200]}}},"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[0,0]},"output1":{"pos":[200,0]},"globals1":{"pos":[-200,0]}}}}},"box1":{"pos":[-300,-200]},"box2":{"pos":[-100,-200]},"copy1":{"pos":[-250,200]},"copy2":{"pos":[-250,400]},"material1":{"pos":[-600,1050]},"merge1":{"pos":[-600,900]},"merge2":{"pos":[-250,0]},"plane1":{"pos":[-700,150]},"noise1":{"pos":[-600,400]},"scatter1":{"pos":[-750,550]},"copy3":{"pos":[-900,800]},"fileGLTF1":{"pos":[-950,450]},"hierarchy1":{"pos":[-950,650]},"merge3":{"pos":[-900,950]},"transform1":{"pos":[-950,550]},"BVHVisualizer1":{"pos":[-750,1950]},"attribDelete1":{"pos":[-1050,1250]},"normals2":{"pos":[-1000,1600]},"CADExtrude1":{"pos":[-800,300]},"merge4":{"pos":[-400,1300]},"attribDelete2":{"pos":[-400,1500]},"hierarchy2":{"pos":[-350,1400]},"merge5":{"pos":[-1000,1450]},"merge6":{"pos":[-700,1300]},"attribDelete3":{"pos":[-850,1250]},"normals1":{"pos":[-1000,750]},"scatter2":{"pos":[-1150,600]},"fileGLTF2":{"pos":[-1350,350]},"hierarchy3":{"pos":[-1350,600]},"transform2":{"pos":[-1350,800]},"normals3":{"pos":[-1400,950]},"delete1":{"pos":[-1450,750]},"normalsHelper1":{"pos":[-1150,850]},"instance1":{"pos":[-1300,950]},"normals4":{"pos":[-1350,700]},"actor1":{"pos":[-1250,1200],"selection":["getObject1"],"nodes":{"onTick1":{"pos":[-200,0]},"setObjectPosition1":{"pos":[450,-50]},"floatToVec3_1":{"pos":[200,100]},"sin1":{"pos":[100,100]},"setObjectLookAt1":{"pos":[150,-150]},"getObjectWorldPosition1":{"pos":[-50,-250]},"getObject1":{"pos":[-200,-150]},"getObject2":{"pos":[-200,-300]}}},"copy4":{"pos":[-1200,1050]}}},"cameras":{"pos":[150,0],"nodes":{"cameraControls1":{"pos":[-300,-50],"nodes":{"firstPersonControls1":{"pos":[0,-200]}}},"perspectiveCamera_FPS":{"pos":[-300,-200]},"cameraWebXRVR1":{"pos":[-300,50]}}}}},"shaders":{"/stairs/MAT/meshStandardBuilder1":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/stairs/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/stairs/actor1":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /stairs/actor1/getObject1\n\tv_POLY_getObject1_Object3D = computed(() =>\n\t\tgetObject(\n\t\t\tthis.object3D,\n\t\t\tfalse,\n\t\t\t\" /cameras/cameras:sopGroup/perspectiveCamera_FPS /cameras/cameras:sopGroup /cameras\"\n\t\t)\n\t);\n\n\t// /stairs/actor1/getObjectWorldPosition1\n\tv_POLY_getObjectWorldPosition1_worldPosition = computed(() =>\n\t\tgetObjectWorldPosition(this.v_POLY_getObject1_Object3D.value, v_POLY_getObjectWorldPosition1_worldPosition)\n\t);\n\n\tconstructor(scene, object3D) {\n\t\tsuper(scene, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /stairs/actor1/onTick1\n\tonTick1() {\n\t\tthis.setObjectLookAt1(0);\n\t}\n\n\t// /stairs/actor1/setObjectLookAt1\n\tsetObjectLookAt1() {\n\t\tsetObjectLookAt(\n\t\t\tthis.object3D,\n\t\t\t_setObjectLookAt1_targetPosition.copy(this.v_POLY_getObjectWorldPosition1_worldPosition.value),\n\t\t\t_setObjectLookAt1_up.set(0, 1, 0),\n\t\t\t0.09,\n\t\t\tfalse,\n\t\t\ttrue\n\t\t);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.2598958333333333,"split_panel0":{"split_ratio":0.582089552238806,"split_panel0":{"panelTypes":["viewer","params","network"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera_FPS","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false,"initLayoutData":{"camera":{"position":{"x":300,"y":125},"zoom":1},"history":{"2":{"position":{"x":-25,"y":0},"zoom":1},"147":{"position":{"x":0,"y":0},"zoom":1},"207":{"position":{"x":300,"y":125},"zoom":1},"464":{"position":{"x":0,"y":-200},"zoom":1},"792":{"position":{"x":0,"y":200},"zoom":1},"986":{"position":{"x":-150,"y":-50},"zoom":1},"1376":{"position":{"x":0,"y":200},"zoom":1},"1689":{"position":{"x":0,"y":0},"zoom":1},"1860":{"position":{"x":-150,"y":-50},"zoom":1}},"paramsDisplayed":false,"linkIndex":1}}}},"split_panel1":{"panelTypes":["viewer","params","network"],"currentPanelIndex":1,"panel_data":{"active_folder":null,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"split_ratio":0.8101135190918473,"split_panel0":{"panelTypes":["viewer","params","network"],"currentPanelIndex":2,"panel_data":{"camera":{"position":{"x":300,"y":125},"zoom":1.0453757906438452},"history":{"2":{"position":{"x":-100.00913450620115,"y":39.38400422655028},"zoom":0.9408382115794607},"147":{"position":{"x":588.0845483999999,"y":-1408.3097947199992},"zoom":0.8467543904215152},"207":{"position":{"x":300,"y":125},"zoom":1.0453757906438452},"464":{"position":{"x":-132.53219999999993,"y":-255.11239999999998},"zoom":0.7620789513793633},"792":{"position":{"x":0,"y":200},"zoom":1.0453757906438452},"986":{"position":{"x":-150.82369994455803,"y":171.42152167380976},"zoom":0.21523360500000044},"1376":{"position":{"x":0,"y":200},"zoom":1.0453757906438452},"1689":{"position":{"x":-55.788550415999964,"y":-33.318162053999984},"zoom":1.4339859953962217},"1860":{"position":{"x":-150.82369994455803,"y":171.42152167380976},"zoom":1.1615286562709406}},"paramsDisplayed":true,"linkIndex":1}},"split_panel1":{"panelTypes":["viewer","params","network","spreadsheet","nodeDocs"],"currentPanelIndex":3,"panel_data":{"linkIndex":1}},"split_mode":"horizontal"},"split_mode":"horizontal"},"currentNodes":["/cameras","/stairs","/stairs","/stairs","/stairs","/stairs","/stairs","/stairs"],"navigationHistory":{"nodePaths":{"1":["/","/stairs","/stairs/actor1","/","/cameras","/cameras/cameraControls1"],"2":["/stairs"],"3":["/stairs"],"4":["/stairs"],"5":["/stairs"],"6":["/stairs"],"7":["/stairs"],"8":["/stairs"]},"index":{"1":4,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"createExport":false,"checkRemoteAssetsUse":true,"minimizeFilesCount":false,"compressJs":true,"createZip":false,"runPostExportCommand":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;event/firstPersonControls;mat/meshLambertBuilder;mat/meshStandardBuilder;obj/copNetwork;obj/geo;obj/perspectiveCamera;sop/BVH;sop/BVHVisualizer;sop/CADExtrude;sop/actor;sop/attribDelete;sop/box;sop/cameraControls;sop/cameraWebXRVR;sop/copy;sop/delete;sop/eventsNetwork;sop/fileGLTF;sop/hemisphereLight;sop/hierarchy;sop/instance;sop/material;sop/materialsNetwork;sop/merge;sop/noise;sop/normals;sop/normalsHelper;sop/perspectiveCamera;sop/plane;sop/polarTransform;sop/scatter;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;GL_MESH_STANDARD;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/perspectiveCamera1":"obj/perspectiveCamera","/perspectiveCamera1/events1":"sop/eventsNetwork","/perspectiveCamera1/events1/cameraOrbitControls1":"event/cameraOrbitControls","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/imageUv":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/merge1":"sop/merge","/lights/polarTransform1":"sop/polarTransform","/lights/spotLight1":"sop/spotLight","/stairs":"obj/geo","/stairs/BVH1":"sop/BVH","/stairs/MAT":"sop/materialsNetwork","/stairs/MAT/meshStandardBuilder1":"mat/meshStandardBuilder","/stairs/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/stairs/box1":"sop/box","/stairs/box2":"sop/box","/stairs/copy1":"sop/copy","/stairs/copy2":"sop/copy","/stairs/material1":"sop/material","/stairs/merge1":"sop/merge","/stairs/merge2":"sop/merge","/stairs/plane1":"sop/plane","/stairs/noise1":"sop/noise","/stairs/scatter1":"sop/scatter","/stairs/copy3":"sop/copy","/stairs/fileGLTF1":"sop/fileGLTF","/stairs/hierarchy1":"sop/hierarchy","/stairs/merge3":"sop/merge","/stairs/transform1":"sop/transform","/stairs/BVHVisualizer1":"sop/BVHVisualizer","/stairs/attribDelete1":"sop/attribDelete","/stairs/normals2":"sop/normals","/stairs/CADExtrude1":"sop/CADExtrude","/stairs/merge4":"sop/merge","/stairs/attribDelete2":"sop/attribDelete","/stairs/hierarchy2":"sop/hierarchy","/stairs/merge5":"sop/merge","/stairs/merge6":"sop/merge","/stairs/attribDelete3":"sop/attribDelete","/stairs/normals1":"sop/normals","/stairs/scatter2":"sop/scatter","/stairs/fileGLTF2":"sop/fileGLTF","/stairs/hierarchy3":"sop/hierarchy","/stairs/transform2":"sop/transform","/stairs/normals3":"sop/normals","/stairs/delete1":"sop/delete","/stairs/normalsHelper1":"sop/normalsHelper","/stairs/instance1":"sop/instance","/stairs/normals4":"sop/normals","/stairs/actor1":"sop/actor","/stairs/copy4":"sop/copy","/cameras":"obj/geo","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/firstPersonControls1":"event/firstPersonControls","/cameras/perspectiveCamera_FPS":"sop/perspectiveCamera","/cameras/cameraWebXRVR1":"sop/cameraWebXRVR"}
Js version
Editor version
Engine version
Name
*
Code
{"properties":{"frame":15348,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_FPS","versions":{"polygonjs":"1.4.10"}},"root":{"type":"root","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","nodes":{"events1":{"type":"eventsNetwork","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[4.178788864509418,-1.8203153825744804,-3.812187664346361]}}}}},"params":{"t":[3.0161526633531355,1.1787657307191874,2.814738208647524],"r":[-22.723127930556515,44.66532130223666,16.403892417511617],"controls":"./events1/cameraOrbitControls1"},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/textures/piz_compressed.exr"}},"imageUv":{"type":"image","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/textures/uv.jpg","tflipY":true}}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"skyColor":[0.8745098039215686,0.9450980392156862,0.9411764705882353],"intensity":0.3}},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"],"flags":{"display":true}},"polarTransform1":{"type":"polarTransform","params":{"center":[6.2,0,0],"longitude":-50.4,"latitude":46.8,"depth":14},"inputs":["spotLight1"]},"spotLight1":{"type":"spotLight","params":{"color":[0.9411764705882353,0.9607843137254902,0.8],"intensity":1.3,"penumbra":0.22,"decay":0.1,"castShadow":true,"shadowBias":0}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"stairs":{"type":"geo","nodes":{"BVH1":{"type":"BVH","params":{"maxDepth":12},"inputs":["normals2"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandardBuilder1":{"type":"meshStandardBuilder","nodes":{"checkers1":{"type":"checkers","params":{"uv":{"overriden_options":{}},"freq":{"overriden_options":{}},"freqMult":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"uv","node":"floatToVec2_1","output":"vec2"}]},"constant1":{"type":"constant","params":{"type":4,"color":[0.807843137254902,0.49019607843137253,0.8509803921568627],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec4ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec4ToFloat1","output":"z"}]},"globals1":{"type":"globals"},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"value0","node":"constant1","output":"val"},{"index":1,"inputName":"value1","node":"multScalar1","output":"val"},{"index":2,"inputName":"blend","node":"checkers1","output":"checker"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"multScalar1":{"type":"multScalar","params":{"value":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true},"raw_input":0.79}},"inputs":[{"index":0,"inputName":"value","node":"constant1","output":"val"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"mult","type":"float"}],"out":[{"name":"val","type":"vec3"}]}},"output1":{"type":"output","inputs":[null,null,{"index":2,"inputName":"color","node":"mix1","output":"mix"}]},"vec4ToFloat1":{"type":"vec4ToFloat","params":{"vec":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec","node":"globals1","output":"worldPosition"}]}},"params":{"roughness":0.7},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-main","type":"MeshStandardMaterial","name":"/stairs/MAT/meshStandardBuilder1","color":16711422,"roughness":0.7,"metalness":0,"emissive":0,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshStandardBuilder1-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}},"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"globals1":{"type":"globals"}},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","name":"/stairs/MAT/meshLambertBuilder_INSTANCES","color":16711422,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/stairs/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"box1":{"type":"box","params":{"sizes":[0.3,0.1,1.4000000000000001],"center":[0,0,0.7000000000000001]}},"box2":{"type":"box","params":{"sizes":[0.1,0.6,0.1],"center":[0,0.3,1.4500000000000002]}},"copy1":{"type":"copy","params":{"count":"5*(1+copy('../copy2'))","t":[0,0.09,0],"r":[0,9.6,0]},"inputs":["merge2"]},"copy2":{"type":"copy","params":{"count":13,"t":[2.9076227305223816,0,0]},"inputs":["copy1"]},"material1":{"type":"material","params":{"group":"*","material":"../MAT/meshStandardBuilder1"},"inputs":["merge1"]},"merge1":{"type":"merge","params":{"compact":1,"preserveMaterials":0,"inputsCount":3},"maxInputsCount":3,"inputs":["noise1","copy2"]},"merge2":{"type":"merge","params":{"compact":true},"inputs":["box1","box2"]},"plane1":{"type":"plane","params":{"size":[133,57],"stepSize":0.68066}},"noise1":{"type":"noise","params":{"freq":[0.03999999999999998,0.03999999999999998,0.03999999999999998],"useNormals":1},"inputs":["plane1"],"flags":{"bypass":true}},"scatter1":{"type":"scatter","params":{"pointsCount":10,"seed":36},"inputs":["noise1"]},"copy3":{"type":"copy","params":{"transformMode":0},"inputs":["normals1","scatter1"]},"fileGLTF1":{"type":"fileGLTF","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/flamingo.glb"}},"hierarchy1":{"type":"hierarchy","params":{"mode":1},"inputs":["transform1"]},"merge3":{"type":"merge","params":{"compact":1,"preserveMaterials":0},"inputs":["copy3"]},"transform1":{"type":"transform","params":{"scale":0.17},"inputs":["fileGLTF1"]},"BVHVisualizer1":{"type":"BVHVisualizer","inputs":["BVH1"]},"attribDelete1":{"type":"attribDelete","params":{"name":"*colo* *uv*"},"inputs":["merge3"]},"normals2":{"type":"normals","inputs":["merge5"]},"CADExtrude1":{"type":"CADExtrude"},"merge4":{"type":"merge","params":{"compact":1,"preserveMaterials":0},"inputs":["merge1"],"flags":{"bypass":true}},"attribDelete2":{"type":"attribDelete","params":{"name":"co* "},"inputs":["merge4"]},"hierarchy2":{"type":"hierarchy","params":{"mode":1},"inputs":["merge4"]},"merge5":{"type":"merge","params":{"compact":1,"preserveMaterials":0},"inputs":["attribDelete1","attribDelete3"]},"merge6":{"type":"merge","inputs":["material1","merge3","actor1"],"flags":{"display":true}},"attribDelete3":{"type":"attribDelete","params":{"name":"*colo* *uv*"},"inputs":["merge1"]},"normals1":{"type":"normals","inputs":["hierarchy1"]},"scatter2":{"type":"scatter","params":{"pointsCount":10,"seed":26},"inputs":["noise1"]},"fileGLTF2":{"type":"fileGLTF","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/flamingo.glb"}},"hierarchy3":{"type":"hierarchy","params":{"mode":1},"inputs":["fileGLTF2"]},"transform2":{"type":"transform","params":{"scale":0.09},"inputs":["normals4"]},"normals3":{"type":"normals","inputs":["delete1"],"flags":{"bypass":true}},"delete1":{"type":"delete","params":{"class":2,"keepPoints":1},"inputs":["hierarchy3"],"flags":{"bypass":true}},"normalsHelper1":{"type":"normalsHelper","params":{"size":12.9},"inputs":["scatter2"]},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["transform2","scatter2"]},"normals4":{"type":"normals","inputs":["hierarchy3"]},"actor1":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"setObjectPosition1":{"type":"setObjectPosition","params":{"position":{"overriden_options":{}},"lerp":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":5,"inputs":[null,null,{"index":2,"inputName":"position","node":"floatToVec3_1","output":"vec3"}]},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,{"index":1,"inputName":"y","node":"sin1","output":"sin"}]},"sin1":{"type":"sin","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"onTick1","output":"time"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"sin","type":"float","isArray":false}]}},"setObjectLookAt1":{"type":"setObjectLookAt","params":{"targetPosition":{"overriden_options":{}},"up":{"overriden_options":{}},"lerp":{"raw_input":0.09,"overriden_options":{}},"invertDirection":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":7,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"targetPosition","node":"getObjectWorldPosition1","output":"worldPosition"}]},"getObjectWorldPosition1":{"type":"getObjectWorldPosition","inputs":[{"index":0,"inputName":"Object3D","node":"getObject1","output":"Object3D"}]},"getObject1":{"type":"getObject","params":{"getCurrentObject":0,"mask":" /cameras/cameras:sopGroup/perspectiveCamera_FPS /cameras/cameras:sopGroup /cameras"},"maxInputsCount":2},"getObject2":{"type":"getObject","params":{"getCurrentObject":0,"mask":" /cameras/cameras:sopGroup/perspectiveCamera_FPS /cameras/cameras:sopGroup /cameras /perspectiveCamera1"},"maxInputsCount":2}},"inputs":["copy4"],"persisted_config":{"variableNames":["v_POLY_getObjectWorldPosition1_worldPosition","_setObjectLookAt1_targetPosition","_setObjectLookAt1_up"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["getObject","getObjectWorldPosition","setObjectLookAt"],"serializedParamConfigs":[],"eventDatas":[]}},"copy4":{"type":"copy","inputs":["transform2","scatter2"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"cameraControls1":{"type":"cameraControls","nodes":{"firstPersonControls1":{"type":"firstPersonControls","params":{"colliderObject":"../../../stairs/BVH1","translateSpeed":2.3,"jumpStrength":16,"runSpeedMult":2.7,"startPosition":[3,5.4,3.8000000000000003],"startRotation":[0,-45,0]}}},"params":{"node":"firstPersonControls1"},"inputs":["perspectiveCamera_FPS"]},"perspectiveCamera_FPS":{"type":"perspectiveCamera"},"cameraWebXRVR1":{"type":"cameraWebXRVR","inputs":["cameraControls1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_FPS"}},"ui":{"nodes":{"perspectiveCamera1":{"pos":[150,100],"nodes":{"events1":{"pos":[-200,50],"nodes":{"cameraOrbitControls1":{"pos":[150,50]}}}}},"COP":{"pos":[150,200],"nodes":{"envMap":{"pos":[50,200]},"imageEnv":{"pos":[50,100]},"imageUv":{"pos":[-100,100]}}},"lights":{"pos":[150,-100],"nodes":{"hemisphereLight1":{"pos":[-250,0]},"merge1":{"pos":[-150,400]},"polarTransform1":{"pos":[50,200]},"spotLight1":{"pos":[50,0]}}},"stairs":{"pos":[150,-200],"selection":["actor1"],"nodes":{"BVH1":{"pos":[-750,1800]},"MAT":{"pos":[-200,850],"selection":["meshLambertBuilder_INSTANCES"],"nodes":{"meshStandardBuilder1":{"pos":[0,200],"selection":["checkers1"],"nodes":{"checkers1":{"pos":[-50,150]},"constant1":{"pos":[-100,-300]},"floatToVec2_1":{"pos":[-300,200]},"globals1":{"pos":[-600,50]},"mix1":{"pos":[200,-250]},"multScalar1":{"pos":[0,-150]},"output1":{"pos":[400,-150]},"vec4ToFloat1":{"pos":[-450,200]}}},"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[0,0]},"output1":{"pos":[200,0]},"globals1":{"pos":[-200,0]}}}}},"box1":{"pos":[-300,-200]},"box2":{"pos":[-100,-200]},"copy1":{"pos":[-250,200]},"copy2":{"pos":[-250,400]},"material1":{"pos":[-600,1050]},"merge1":{"pos":[-600,900]},"merge2":{"pos":[-250,0]},"plane1":{"pos":[-700,150]},"noise1":{"pos":[-600,400]},"scatter1":{"pos":[-750,550]},"copy3":{"pos":[-900,800]},"fileGLTF1":{"pos":[-950,450]},"hierarchy1":{"pos":[-950,650]},"merge3":{"pos":[-900,950]},"transform1":{"pos":[-950,550]},"BVHVisualizer1":{"pos":[-750,1950]},"attribDelete1":{"pos":[-1050,1250]},"normals2":{"pos":[-1000,1600]},"CADExtrude1":{"pos":[-800,300]},"merge4":{"pos":[-400,1300]},"attribDelete2":{"pos":[-400,1500]},"hierarchy2":{"pos":[-350,1400]},"merge5":{"pos":[-1000,1450]},"merge6":{"pos":[-700,1300]},"attribDelete3":{"pos":[-850,1250]},"normals1":{"pos":[-1000,750]},"scatter2":{"pos":[-1150,600]},"fileGLTF2":{"pos":[-1350,350]},"hierarchy3":{"pos":[-1350,600]},"transform2":{"pos":[-1350,800]},"normals3":{"pos":[-1400,950]},"delete1":{"pos":[-1450,750]},"normalsHelper1":{"pos":[-1150,850]},"instance1":{"pos":[-1300,950]},"normals4":{"pos":[-1350,700]},"actor1":{"pos":[-1250,1200],"selection":["getObject1"],"nodes":{"onTick1":{"pos":[-200,0]},"setObjectPosition1":{"pos":[450,-50]},"floatToVec3_1":{"pos":[200,100]},"sin1":{"pos":[100,100]},"setObjectLookAt1":{"pos":[150,-150]},"getObjectWorldPosition1":{"pos":[-50,-250]},"getObject1":{"pos":[-200,-150]},"getObject2":{"pos":[-200,-300]}}},"copy4":{"pos":[-1200,1050]}}},"cameras":{"pos":[150,0],"nodes":{"cameraControls1":{"pos":[-300,-50],"nodes":{"firstPersonControls1":{"pos":[0,-200]}}},"perspectiveCamera_FPS":{"pos":[-300,-200]},"cameraWebXRVR1":{"pos":[-300,50]}}}}},"shaders":{"/stairs/MAT/meshStandardBuilder1":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_worldPosition = modelMatrix * vec4( position, 1.0 );\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /stairs/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /stairs/MAT/meshStandardBuilder1/globals1\nvarying vec4 v_POLY_globals1_worldPosition;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /stairs/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.807843137254902, 0.49019607843137253, 0.8509803921568627);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/multScalar1\n\tvec3 v_POLY_multScalar1_val = (0.79*v_POLY_constant1_val);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/vec4ToFloat1\n\tfloat v_POLY_vec4ToFloat1_x = v_POLY_globals1_worldPosition.x;\n\tfloat v_POLY_vec4ToFloat1_z = v_POLY_globals1_worldPosition.z;\n\t\n\t// /stairs/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec4ToFloat1_x, v_POLY_vec4ToFloat1_z);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /stairs/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_multScalar1_val, v_POLY_checkers1_checker);\n\t\n\t// /stairs/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/stairs/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /stairs/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/stairs/actor1":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /stairs/actor1/getObject1\n\tv_POLY_getObject1_Object3D = computed(() =>\n\t\tgetObject(\n\t\t\tthis.object3D,\n\t\t\tfalse,\n\t\t\t\" /cameras/cameras:sopGroup/perspectiveCamera_FPS /cameras/cameras:sopGroup /cameras\"\n\t\t)\n\t);\n\n\t// /stairs/actor1/getObjectWorldPosition1\n\tv_POLY_getObjectWorldPosition1_worldPosition = computed(() =>\n\t\tgetObjectWorldPosition(this.v_POLY_getObject1_Object3D.value, v_POLY_getObjectWorldPosition1_worldPosition)\n\t);\n\n\tconstructor(scene, object3D) {\n\t\tsuper(scene, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /stairs/actor1/onTick1\n\tonTick1() {\n\t\tthis.setObjectLookAt1(0);\n\t}\n\n\t// /stairs/actor1/setObjectLookAt1\n\tsetObjectLookAt1() {\n\t\tsetObjectLookAt(\n\t\t\tthis.object3D,\n\t\t\t_setObjectLookAt1_targetPosition.copy(this.v_POLY_getObjectWorldPosition1_worldPosition.value),\n\t\t\t_setObjectLookAt1_up.set(0, 1, 0),\n\t\t\t0.09,\n\t\t\tfalse,\n\t\t\ttrue\n\t\t);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.2598958333333333,"split_panel0":{"split_ratio":0.582089552238806,"split_panel0":{"panelTypes":["viewer","params","network"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera_FPS","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false,"initLayoutData":{"camera":{"position":{"x":300,"y":125},"zoom":1},"history":{"2":{"position":{"x":-25,"y":0},"zoom":1},"147":{"position":{"x":0,"y":0},"zoom":1},"207":{"position":{"x":300,"y":125},"zoom":1},"464":{"position":{"x":0,"y":-200},"zoom":1},"792":{"position":{"x":0,"y":200},"zoom":1},"986":{"position":{"x":-150,"y":-50},"zoom":1},"1376":{"position":{"x":0,"y":200},"zoom":1},"1689":{"position":{"x":0,"y":0},"zoom":1},"1860":{"position":{"x":-150,"y":-50},"zoom":1}},"paramsDisplayed":false,"linkIndex":1}}}},"split_panel1":{"panelTypes":["viewer","params","network"],"currentPanelIndex":1,"panel_data":{"active_folder":null,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"split_ratio":0.8101135190918473,"split_panel0":{"panelTypes":["viewer","params","network"],"currentPanelIndex":2,"panel_data":{"camera":{"position":{"x":300,"y":125},"zoom":1.0453757906438452},"history":{"2":{"position":{"x":-100.00913450620115,"y":39.38400422655028},"zoom":0.9408382115794607},"147":{"position":{"x":588.0845483999999,"y":-1408.3097947199992},"zoom":0.8467543904215152},"207":{"position":{"x":300,"y":125},"zoom":1.0453757906438452},"464":{"position":{"x":-132.53219999999993,"y":-255.11239999999998},"zoom":0.7620789513793633},"792":{"position":{"x":0,"y":200},"zoom":1.0453757906438452},"986":{"position":{"x":-150.82369994455803,"y":171.42152167380976},"zoom":0.21523360500000044},"1376":{"position":{"x":0,"y":200},"zoom":1.0453757906438452},"1689":{"position":{"x":-55.788550415999964,"y":-33.318162053999984},"zoom":1.4339859953962217},"1860":{"position":{"x":-150.82369994455803,"y":171.42152167380976},"zoom":1.1615286562709406}},"paramsDisplayed":true,"linkIndex":1}},"split_panel1":{"panelTypes":["viewer","params","network","spreadsheet","nodeDocs"],"currentPanelIndex":3,"panel_data":{"linkIndex":1}},"split_mode":"horizontal"},"split_mode":"horizontal"},"currentNodes":["/cameras","/stairs","/stairs","/stairs","/stairs","/stairs","/stairs","/stairs"],"navigationHistory":{"nodePaths":{"1":["/","/stairs","/stairs/actor1","/","/cameras","/cameras/cameraControls1"],"2":["/stairs"],"3":["/stairs"],"4":["/stairs"],"5":["/stairs"],"6":["/stairs"],"7":["/stairs"],"8":["/stairs"]},"index":{"1":4,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"createExport":false,"checkRemoteAssetsUse":true,"minimizeFilesCount":false,"compressJs":true,"createZip":false,"runPostExportCommand":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;event/firstPersonControls;mat/meshLambertBuilder;mat/meshStandardBuilder;obj/copNetwork;obj/geo;obj/perspectiveCamera;sop/BVH;sop/BVHVisualizer;sop/CADExtrude;sop/actor;sop/attribDelete;sop/box;sop/cameraControls;sop/cameraWebXRVR;sop/copy;sop/delete;sop/eventsNetwork;sop/fileGLTF;sop/hemisphereLight;sop/hierarchy;sop/instance;sop/material;sop/materialsNetwork;sop/merge;sop/noise;sop/normals;sop/normalsHelper;sop/perspectiveCamera;sop/plane;sop/polarTransform;sop/scatter;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;GL_MESH_STANDARD;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/perspectiveCamera1":"obj/perspectiveCamera","/perspectiveCamera1/events1":"sop/eventsNetwork","/perspectiveCamera1/events1/cameraOrbitControls1":"event/cameraOrbitControls","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/imageUv":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/merge1":"sop/merge","/lights/polarTransform1":"sop/polarTransform","/lights/spotLight1":"sop/spotLight","/stairs":"obj/geo","/stairs/BVH1":"sop/BVH","/stairs/MAT":"sop/materialsNetwork","/stairs/MAT/meshStandardBuilder1":"mat/meshStandardBuilder","/stairs/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/stairs/box1":"sop/box","/stairs/box2":"sop/box","/stairs/copy1":"sop/copy","/stairs/copy2":"sop/copy","/stairs/material1":"sop/material","/stairs/merge1":"sop/merge","/stairs/merge2":"sop/merge","/stairs/plane1":"sop/plane","/stairs/noise1":"sop/noise","/stairs/scatter1":"sop/scatter","/stairs/copy3":"sop/copy","/stairs/fileGLTF1":"sop/fileGLTF","/stairs/hierarchy1":"sop/hierarchy","/stairs/merge3":"sop/merge","/stairs/transform1":"sop/transform","/stairs/BVHVisualizer1":"sop/BVHVisualizer","/stairs/attribDelete1":"sop/attribDelete","/stairs/normals2":"sop/normals","/stairs/CADExtrude1":"sop/CADExtrude","/stairs/merge4":"sop/merge","/stairs/attribDelete2":"sop/attribDelete","/stairs/hierarchy2":"sop/hierarchy","/stairs/merge5":"sop/merge","/stairs/merge6":"sop/merge","/stairs/attribDelete3":"sop/attribDelete","/stairs/normals1":"sop/normals","/stairs/scatter2":"sop/scatter","/stairs/fileGLTF2":"sop/fileGLTF","/stairs/hierarchy3":"sop/hierarchy","/stairs/transform2":"sop/transform","/stairs/normals3":"sop/normals","/stairs/delete1":"sop/delete","/stairs/normalsHelper1":"sop/normalsHelper","/stairs/instance1":"sop/instance","/stairs/normals4":"sop/normals","/stairs/actor1":"sop/actor","/stairs/copy4":"sop/copy","/cameras":"obj/geo","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/firstPersonControls1":"event/firstPersonControls","/cameras/perspectiveCamera_FPS":"sop/perspectiveCamera","/cameras/cameraWebXRVR1":"sop/cameraWebXRVR"}
Js version
Editor version
Engine version
Logout
0%
There was a problem displaying your scene:
view scene source