Name
*
Code
{"properties":{"frame":326,"maxFrame":600,"maxFrameLocked":true,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1","versions":{"polygonjs":"1.4.10"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"sphere1":{"type":"sphere","params":{"center":[0,1,0]}},"material1":{"type":"material","params":{"material":"../MAT/meshStandard1"},"inputs":["materialProperties1"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandard1":{"type":"meshStandard","params":{"useMap":1,"map":"../../../COP/image1","useEnvMap":1,"envMap":"../../../COP/envMap","metalness":1,"roughness":0}},"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"globals1":{"type":"globals"}},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","name":"/geo1/MAT/meshLambertBuilder_INSTANCES","color":16711422,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"fileGLTF1":{"type":"fileGLTF"},"materialProperties1":{"type":"materialProperties","params":{"tside":1,"twireframe":1},"inputs":["fileGLTF1"]},"objectProperties1":{"type":"objectProperties","params":{"tcastShadow":1},"inputs":["transform1"]},"hierarchy1":{"type":"hierarchy","params":{"mode":1},"inputs":["fileGLTF1"]},"transform1":{"type":"transform","params":{"t":[0,0.31654116423983036,0],"scale":1.9},"inputs":["hierarchy1"]},"actor1":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"setObjectPosition1":{"type":"setObjectPosition","params":{"position":{"overriden_options":{}},"lerp":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":5,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"position","node":"floatToVec3_1","output":"vec3"}]},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,{"index":1,"inputName":"y","node":"sin1","output":"sin"}]},"sin1":{"type":"sin","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"onTick1","output":"time"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"sin","type":"float","isArray":false}]}}},"inputs":["hierarchy2"]},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.8,0],"longitude":100.8,"latitude":28.8,"depth":3},"inputs":["directionalLight1"]},"directionalLight1":{"type":"directionalLight","params":{"intensity":0.78,"showHelper":true,"castShadow":true}},"merge1":{"type":"merge","inputs":["polarTransform1","objectProperties1"]},"hierarchy2":{"type":"hierarchy","inputs":["merge1"]},"line1":{"type":"line","params":{"length":15,"pointsCount":4,"origin":[5.6,0.3,-5.5],"direction":[0,0,11]}},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["hierarchy2","line1"]},"copy1":{"type":"copy","inputs":["hierarchy2","line1"]},"spotLight1":{"type":"spotLight","params":{"intensity":40,"angle":12.6,"showHelper":true,"castShadow":1}},"lightMixer1":{"type":"lightMixer","params":{"directionalLight1_int":{"type":"float","default_value":0.78,"options":{"range":[0,2],"rangeLocked":[true,false],"spare":true}},"directionalLight1_col":{"type":"color","default_value":[1,1,1],"options":{"separatorAfter":true,"spare":true}}},"inputs":["copy1"],"flags":{"display":true}}},"params":{"t":[1.4767838881586177,0,0],"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"ground":{"type":"geo","nodes":{"material1":{"type":"material","params":{"material":"../MAT/meshStandardBuilder1"},"inputs":["noise1"],"flags":{"display":true}},"MAT":{"type":"materialsNetwork","nodes":{"meshStandardBuilder1":{"type":"meshStandardBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[null,null,{"index":2,"inputName":"color","node":"mix1","output":"mix"}]},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec","node":"globals1","output":"position"}]},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec3ToFloat1","output":"z"}]},"checkers1":{"type":"checkers","params":{"uv":{"overriden_options":{}},"freq":{"overriden_options":{}},"freqMult":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"uv","node":"floatToVec2_1","output":"vec2"}]},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"value0","node":"constant1","output":"val"},{"index":1,"inputName":"value1","node":"constant2","output":"val"},{"index":2,"inputName":"blend","node":"checkers1","output":"checker"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"constant1":{"type":"constant","params":{"type":4,"color":[0.24313725490196078,0.5098039215686274,0.8549019607843137],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"constant2":{"type":"constant","params":{"type":4,"color":[0.047058823529411764,0.10196078431372549,0.17647058823529413],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}}},"params":{"roughness":0.22},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-main","type":"MeshStandardMaterial","name":"/ground/MAT/meshStandardBuilder1","color":16711422,"roughness":0.22,"metalness":0,"emissive":0,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"box1":{"type":"box","params":{"sizes":[9.98,1,9.98],"center":[0,-0.5,0]}},"plane1":{"type":"plane","params":{"size":[100,100],"stepSize":0.86057}},"noise1":{"type":"noise","params":{"amplitude":6,"freq":[0.029999999999999943,-0.17,0.029999999999999943],"useNormals":1},"inputs":["plane1"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.28},"flags":{"display":true}},"spotLight1":{"type":"spotLight","params":{"intensity":3.5,"decay":0.1,"distance":10,"showHelper":1,"castShadow":1}},"polarTransform1":{"type":"polarTransform","params":{"center":["ch(\"../../geo1/tx\")","ch(\"../../geo1/ty\")+1","ch(\"../../geo1/tz\")"],"longitude":108,"latitude":28.8,"depth":3},"inputs":["directionalLight1"]},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"]},"directionalLight1":{"type":"directionalLight","params":{"intensity":5.8,"showHelper":true,"castShadow":1}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","params":{"position":[3.3,3.3,3.3]}},"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[2.3212414945527686,-0.05226780184395743,-3.033070758617219]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["actor2"],"flags":{"display":true}},"actor1":{"type":"actor","nodes":{"onTick1":{"type":"onTick"}},"inputs":["perspectiveCamera1"],"flags":{"bypass":true}},"actor2":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"getObjectWorldPosition1":{"type":"getObjectWorldPosition"},"atan1":{"type":"atan","params":{"val":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"val","node":"divide1","output":"divide"}],"connection_points":{"in":[{"name":"val","type":"float","isArray":false}],"out":[{"name":"atan","type":"float","isArray":false}]}},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec3":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec3","node":"getObjectWorldPosition1","output":"worldPosition"}]},"divide1":{"type":"divide","params":{"div0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"div1":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"div2":{"type":"float","default_value":1,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"div0","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"div1","node":"vec3ToFloat1","output":"z"}],"connection_points":{"in":[{"name":"div0","type":"float","isArray":false},{"name":"div1","type":"float","isArray":false},{"name":"div2","type":"float","isArray":false}],"out":[{"name":"divide","type":"float","isArray":false}]}},"sin2":{"type":"sin","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"sin","type":"float","isArray":false}]}},"cos1":{"type":"cos","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"cos","type":"float","isArray":false}]}},"add1":{"type":"add","params":{"add0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}},"add1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}},"add2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"atan1","output":"atan"},{"index":1,"inputName":"add1","node":"mult3","output":"product"}],"connection_points":{"in":[{"name":"add0","type":"float","isArray":false},{"name":"add1","type":"float","isArray":false},{"name":"add2","type":"float","isArray":false}],"out":[{"name":"sum","type":"float","isArray":false}]}},"length1":{"type":"length","params":{"v":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"v","node":"floatToVec3_2","output":"vec3"}],"connection_points":{"in":[{"name":"v","type":"Vector3","isArray":false}],"out":[{"name":"val","type":"float","isArray":false}]}},"floatToVec3_2":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},null,{"index":2,"inputName":"z","node":"vec3ToFloat1","output":"z"}]},"floatToVec3_3":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"mult1","output":"product"},null,{"index":2,"inputName":"z","node":"mult2","output":"product"}]},"mult1":{"type":"mult","params":{"mult0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult1":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult2":{"type":"float","default_value":1,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"mult0","node":"sin2","output":"sin"},{"index":1,"inputName":"mult1","node":"length1","output":"val"}],"connection_points":{"in":[{"name":"mult0","type":"float","isArray":false},{"name":"mult1","type":"float","isArray":false},{"name":"mult2","type":"float","isArray":false}],"out":[{"name":"product","type":"float","isArray":false}]}},"mult2":{"type":"mult","params":{"mult0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult1":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult2":{"type":"float","default_value":1,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"mult0","node":"cos1","output":"cos"},{"index":1,"inputName":"mult1","node":"length1","output":"val"}],"connection_points":{"in":[{"name":"mult0","type":"float","isArray":false},{"name":"mult1","type":"float","isArray":false},{"name":"mult2","type":"float","isArray":false}],"out":[{"name":"product","type":"float","isArray":false}]}},"setObjectPosition1":{"type":"setObjectPosition","params":{"position":{"overriden_options":{}},"lerp":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":5,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"position","node":"add2","output":"sum"}]},"mult3":{"type":"mult","params":{"mult0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false},"overriden_options":{}},"mult1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true},"raw_input":0.04}},"inputs":[{"index":0,"inputName":"mult0","node":"onTick1","output":"delta"}],"connection_points":{"in":[{"name":"mult0","type":"float","isArray":false},{"name":"mult1","type":"float","isArray":false}],"out":[{"name":"product","type":"float","isArray":false}]}},"add2":{"type":"add","params":{"add0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"add1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true}}},"inputs":[{"index":0,"inputName":"add0","node":"floatToVec3_3","output":"vec3"}],"connection_points":{"in":[{"name":"add0","type":"Vector3","isArray":false},{"name":"add1","type":"Vector3","isArray":false}],"out":[{"name":"sum","type":"Vector3","isArray":false}]}}},"inputs":["perspectiveCamera1"],"persisted_config":{"variableNames":["v_POLY_getObjectWorldPosition1_worldPosition","_vec3ToFloat1_vec3","v_POLY_floatToVec3_2_vec3","_length1_v","v_POLY_floatToVec3_3_vec3","_add2_add0","_add2_add1","_setObjectPosition1_position"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["getObjectWorldPosition","globalsTime","globalsTimeDelta","multNumber","divideNumber","floatToVec3","mathFloat_1","lengthVector","addNumber","addVector","setObjectPosition"],"serializedParamConfigs":[],"eventDatas":[]}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"geo2":{"type":"geo","nodes":{"box1":{"type":"box"},"axesHelper1":{"type":"axesHelper"},"transform1":{"type":"transform","params":{"scale":1.54},"inputs":["axesHelper1"],"flags":{"display":true}},"MAT":{"type":"materialsNetwork","nodes":{"meshStandard1":{"type":"meshStandard"},"lineBasic1":{"type":"lineBasic","params":{"lineWidth":10}}}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1"}},"ui":{"nodes":{"geo1":{"pos":[-300,-400],"nodes":{"sphere1":{"pos":[0,50]},"material1":{"pos":[-50,250]},"MAT":{"pos":[-200,400],"selection":["meshStandard1"],"nodes":{"meshStandard1":{"pos":[0,0]},"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[0,0]},"output1":{"pos":[200,0]},"globals1":{"pos":[-200,0]}}}}},"fileGLTF1":{"pos":[-250,-100]},"materialProperties1":{"pos":[-150,50]},"objectProperties1":{"pos":[-350,250]},"hierarchy1":{"pos":[-300,50]},"transform1":{"pos":[-350,150]},"actor1":{"pos":[-600,900],"nodes":{"onTick1":{"pos":[-100,0]},"setObjectPosition1":{"pos":[500,50]},"floatToVec3_1":{"pos":[200,100]},"sin1":{"pos":[100,100]}}},"polarTransform1":{"pos":[-450,150]},"directionalLight1":{"pos":[-450,-100]},"merge1":{"pos":[-450,500]},"hierarchy2":{"pos":[-450,650]},"line1":{"pos":[-50,700]},"instance1":{"pos":[-300,850]},"copy1":{"pos":[-450,1150]},"spotLight1":{"pos":[-600,0]},"lightMixer1":{"pos":[-500,1250]}}},"ground":{"pos":[-50,-450],"nodes":{"material1":{"pos":[200,250]},"MAT":{"pos":[-200,300],"nodes":{"meshStandardBuilder1":{"pos":[0,200],"nodes":{"globals1":{"pos":[-450,0]},"output1":{"pos":[400,0]},"vec3ToFloat1":{"pos":[-200,200]},"floatToVec2_1":{"pos":[-100,200]},"checkers1":{"pos":[50,200]},"mix1":{"pos":[250,0]},"constant1":{"pos":[50,-150]},"constant2":{"pos":[0,0]}}}}},"box1":{"pos":[0,100]},"plane1":{"pos":[200,-50]},"noise1":{"pos":[200,150]}}},"COP":{"pos":[-300,-50],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[-50,-250],"selection":["polarTransform1","directionalLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[300,-50]},"polarTransform1":{"pos":[250,100]},"merge1":{"pos":[100,300]},"directionalLight1":{"pos":[250,-200]}}},"cameras":{"pos":[-50,-150],"selection":["actor2"],"nodes":{"perspectiveCamera1":{"pos":[-50,-50]},"cameraControls1":{"pos":[-50,300],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}},"actor1":{"pos":[-50,100],"nodes":{"onTick1":{"pos":[-150,-150]}}},"actor2":{"pos":[50,100],"selection":["add2"],"nodes":{"onTick1":{"pos":[-100,0]},"getObjectWorldPosition1":{"pos":[-100,150]},"atan1":{"pos":[350,250]},"vec3ToFloat1":{"pos":[50,200]},"divide1":{"pos":[250,250]},"sin2":{"pos":[600,200]},"cos1":{"pos":[600,300]},"add1":{"pos":[500,200]},"length1":{"pos":[600,450]},"floatToVec3_2":{"pos":[300,350]},"floatToVec3_3":{"pos":[850,200]},"mult1":{"pos":[750,200]},"mult2":{"pos":[800,350]},"setObjectPosition1":{"pos":[1000,-150]},"mult3":{"pos":[200,50]},"add2":{"pos":[1000,100]}}}}},"geo2":{"pos":[150,-250],"nodes":{"box1":{"pos":[0,0]},"axesHelper1":{"pos":[100,-100]},"transform1":{"pos":[100,50]},"MAT":{"pos":[-100,100],"nodes":{"meshStandard1":{"pos":[0,0]},"lineBasic1":{"pos":[-150,150]}}}}}}},"shaders":{"/geo1/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/ground/MAT/meshStandardBuilder1":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/cameras/actor2":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /cameras/actor2/getObjectWorldPosition1\n\tv_POLY_getObjectWorldPosition1_worldPosition = computed(() =>\n\t\tgetObjectWorldPosition(this.object3D, v_POLY_getObjectWorldPosition1_worldPosition)\n\t);\n\n\t// /cameras/actor2/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\t// /cameras/actor2/vec3ToFloat1\n\tv_POLY_vec3ToFloat1_x = computed(\n\t\t() => _vec3ToFloat1_vec3.copy(this.v_POLY_getObjectWorldPosition1_worldPosition.value).x\n\t);\n\tv_POLY_vec3ToFloat1_z = computed(\n\t\t() => _vec3ToFloat1_vec3.copy(this.v_POLY_getObjectWorldPosition1_worldPosition.value).z\n\t);\n\n\t// /cameras/actor2/mult3\n\tv_POLY_mult3_product = computed(() => multNumber(this.v_POLY_onTick1_delta.value, 0.04));\n\n\t// /cameras/actor2/divide1\n\tv_POLY_divide1_divide = computed(() =>\n\t\tdivideNumber(this.v_POLY_vec3ToFloat1_x.value, this.v_POLY_vec3ToFloat1_z.value, 1.0)\n\t);\n\n\t// /cameras/actor2/floatToVec3_2\n\tv_POLY_floatToVec3_2_vec3 = computed(() =>\n\t\tfloatToVec3(this.v_POLY_vec3ToFloat1_x.value, 0.0, this.v_POLY_vec3ToFloat1_z.value, v_POLY_floatToVec3_2_vec3)\n\t);\n\n\t// /cameras/actor2/atan1\n\tv_POLY_atan1_atan = computed(() => mathFloat_1(Math.atan, this.v_POLY_divide1_divide.value));\n\n\t// /cameras/actor2/length1\n\tv_POLY_length1_val = computed(() => lengthVector(_length1_v.copy(this.v_POLY_floatToVec3_2_vec3.value)));\n\n\t// /cameras/actor2/add1\n\tv_POLY_add1_sum = computed(() => addNumber(this.v_POLY_atan1_atan.value, this.v_POLY_mult3_product.value, 0.0));\n\n\t// /cameras/actor2/sin2\n\tv_POLY_sin2_sin = computed(() => mathFloat_1(Math.sin, this.v_POLY_add1_sum.value));\n\n\t// /cameras/actor2/cos1\n\tv_POLY_cos1_cos = computed(() => mathFloat_1(Math.cos, this.v_POLY_add1_sum.value));\n\n\t// /cameras/actor2/mult1\n\tv_POLY_mult1_product = computed(() => multNumber(this.v_POLY_sin2_sin.value, this.v_POLY_length1_val.value, 1.0));\n\n\t// /cameras/actor2/mult2\n\tv_POLY_mult2_product = computed(() => multNumber(this.v_POLY_cos1_cos.value, this.v_POLY_length1_val.value, 1.0));\n\n\t// /cameras/actor2/floatToVec3_3\n\tv_POLY_floatToVec3_3_vec3 = computed(() =>\n\t\tfloatToVec3(this.v_POLY_mult1_product.value, 0.0, this.v_POLY_mult2_product.value, v_POLY_floatToVec3_3_vec3)\n\t);\n\n\t// /cameras/actor2/add2\n\tv_POLY_add2_sum = computed(() =>\n\t\taddVector(_add2_add0.copy(this.v_POLY_floatToVec3_3_vec3.value), _add2_add1.set(0, 0, 0))\n\t);\n\n\tconstructor(scene, object3D) {\n\t\tsuper(scene, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /cameras/actor2/onTick1\n\tonTick1() {\n\t\tthis.setObjectPosition1(0);\n\t}\n\n\t// /cameras/actor2/setObjectPosition1\n\tsetObjectPosition1() {\n\t\tsetObjectPosition(this.object3D, _setObjectPosition1_position.copy(this.v_POLY_add2_sum.value), 1.0, true);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.2984375,"split_panel0":{"split_ratio":0.4890929965556831,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera1","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false,"initLayoutData":{"camera":{"position":{"x":-150,"y":-50},"zoom":1},"history":{"2":{"position":{"x":0,"y":0},"zoom":1},"36":{"position":{"x":100,"y":-125},"zoom":1},"96":{"position":{"x":100,"y":-200},"zoom":1},"159":{"position":{"x":-50,"y":50},"zoom":1},"219":{"position":{"x":0,"y":-50},"zoom":1},"406":{"position":{"x":0,"y":-200},"zoom":1},"1002":{"position":{"x":0,"y":0},"zoom":1},"1027":{"position":{"x":0,"y":0},"zoom":1},"1133":{"position":{"x":0,"y":0},"zoom":1},"1219":{"position":{"x":-150,"y":-50},"zoom":1},"1328":{"position":{"x":-150,"y":-50},"zoom":1},"1594":{"position":{"x":-150,"y":-50},"zoom":1},"1652":{"position":{"x":0,"y":0},"zoom":1},"1804":{"position":{"x":-150,"y":-50},"zoom":1},"1937":{"position":{"x":-150,"y":-50},"zoom":1},"2179":{"position":{"x":-150,"y":-50},"zoom":1}},"paramsDisplayed":false,"linkIndex":1}}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":null,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"split_ratio":0.941351150705271,"split_panel0":{"panelTypes":["viewer","network"],"currentPanelIndex":1,"panel_data":{"camera":{"position":{"x":-507.7926614404172,"y":-139.0508112202751},"zoom":1.0222221069335937},"history":{"2":{"position":{"x":-132.4260545521523,"y":132.14168375243395},"zoom":0.7402737005972982},"36":{"position":{"x":181.5068416177026,"y":-644.073591106706},"zoom":0.44003309837202587},"96":{"position":{"x":-209.7826436336681,"y":-290.2174014792788},"zoom":0.9199998962402339},"159":{"position":{"x":-264.130458932746,"y":-123.91306309258562},"zoom":0.8279999066162106},"219":{"position":{"x":84.22585490981824,"y":-59.897827203256746},"zoom":1.2620026011525847},"406":{"position":{"x":0,"y":-200},"zoom":0.9199998962402339},"1002":{"position":{"x":0,"y":0},"zoom":0.6036119319232176},"1027":{"position":{"x":-116.97291559452053,"y":-81.58066921159522},"zoom":1.5580279026575126},"1133":{"position":{"x":0,"y":0},"zoom":0.9199998962402339},"1219":{"position":{"x":-255.69916431269735,"y":-61.033749617355255},"zoom":0.8279999066162111},"1329":{"position":{"x":-507.7926614404172,"y":-139.0508112202751},"zoom":1.0222221069335937},"1594":{"position":{"x":-153.64941868551585,"y":71.68848675473602},"zoom":1.1358023410373268},"1652":{"position":{"x":0,"y":0},"zoom":1.2620026011525847},"1804":{"position":{"x":-97.18144934743395,"y":-253.12384444542928},"zoom":1.015464609872837},"1937":{"position":{"x":-155.54673975600915,"y":0.7130491977979432},"zoom":0.7451999159545897},"2179":{"position":{"x":-444.20569774719064,"y":-138.07255024037931},"zoom":1.0222221069335937}},"paramsDisplayed":false,"linkIndex":1}},"split_panel1":{"panelTypes":["network","params","viewer","nodeDocs","shaderCodePreview"],"currentPanelIndex":3,"panel_data":{"linkIndex":1}},"split_mode":"horizontal"},"split_mode":"horizontal"},"currentNodes":["/cameras/actor2","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/","/lights","/","/cameras","/cameras/actor2"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":4,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"createExport":false,"checkRemoteAssetsUse":true,"minimizeFilesCount":false,"compressJs":true,"createZip":false,"runPostExportCommand":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/lineBasic;mat/meshLambertBuilder;mat/meshStandard;mat/meshStandardBuilder;obj/copNetwork;obj/geo;sop/actor;sop/axesHelper;sop/box;sop/cameraControls;sop/copy;sop/directionalLight;sop/fileGLTF;sop/hemisphereLight;sop/hierarchy;sop/instance;sop/lightMixer;sop/line;sop/material;sop/materialProperties;sop/materialsNetwork;sop/merge;sop/noise;sop/objectProperties;sop/perspectiveCamera;sop/plane;sop/polarTransform;sop/sphere;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;GL_MESH_STANDARD;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/sphere1":"sop/sphere","/geo1/material1":"sop/material","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshStandard1":"mat/meshStandard","/geo1/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/geo1/fileGLTF1":"sop/fileGLTF","/geo1/materialProperties1":"sop/materialProperties","/geo1/objectProperties1":"sop/objectProperties","/geo1/hierarchy1":"sop/hierarchy","/geo1/transform1":"sop/transform","/geo1/actor1":"sop/actor","/geo1/polarTransform1":"sop/polarTransform","/geo1/directionalLight1":"sop/directionalLight","/geo1/merge1":"sop/merge","/geo1/hierarchy2":"sop/hierarchy","/geo1/line1":"sop/line","/geo1/instance1":"sop/instance","/geo1/copy1":"sop/copy","/geo1/spotLight1":"sop/spotLight","/geo1/lightMixer1":"sop/lightMixer","/ground":"obj/geo","/ground/material1":"sop/material","/ground/MAT":"sop/materialsNetwork","/ground/MAT/meshStandardBuilder1":"mat/meshStandardBuilder","/ground/box1":"sop/box","/ground/plane1":"sop/plane","/ground/noise1":"sop/noise","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/polarTransform1":"sop/polarTransform","/lights/merge1":"sop/merge","/lights/directionalLight1":"sop/directionalLight","/cameras":"obj/geo","/cameras/perspectiveCamera1":"sop/perspectiveCamera","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls","/cameras/actor1":"sop/actor","/cameras/actor2":"sop/actor","/geo2":"obj/geo","/geo2/box1":"sop/box","/geo2/axesHelper1":"sop/axesHelper","/geo2/transform1":"sop/transform","/geo2/MAT":"sop/materialsNetwork","/geo2/MAT/meshStandard1":"mat/meshStandard","/geo2/MAT/lineBasic1":"mat/lineBasic"}
Js version
Editor version
Engine version
Name
*
Code
{"properties":{"frame":326,"maxFrame":600,"maxFrameLocked":true,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1","versions":{"polygonjs":"1.4.10"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"sphere1":{"type":"sphere","params":{"center":[0,1,0]}},"material1":{"type":"material","params":{"material":"../MAT/meshStandard1"},"inputs":["materialProperties1"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandard1":{"type":"meshStandard","params":{"useMap":1,"map":"../../../COP/image1","useEnvMap":1,"envMap":"../../../COP/envMap","metalness":1,"roughness":0}},"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"globals1":{"type":"globals"}},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","name":"/geo1/MAT/meshLambertBuilder_INSTANCES","color":16711422,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"fileGLTF1":{"type":"fileGLTF"},"materialProperties1":{"type":"materialProperties","params":{"tside":1,"twireframe":1},"inputs":["fileGLTF1"]},"objectProperties1":{"type":"objectProperties","params":{"tcastShadow":1},"inputs":["transform1"]},"hierarchy1":{"type":"hierarchy","params":{"mode":1},"inputs":["fileGLTF1"]},"transform1":{"type":"transform","params":{"t":[0,0.31654116423983036,0],"scale":1.9},"inputs":["hierarchy1"]},"actor1":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"setObjectPosition1":{"type":"setObjectPosition","params":{"position":{"overriden_options":{}},"lerp":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":5,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"position","node":"floatToVec3_1","output":"vec3"}]},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,{"index":1,"inputName":"y","node":"sin1","output":"sin"}]},"sin1":{"type":"sin","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"onTick1","output":"time"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"sin","type":"float","isArray":false}]}}},"inputs":["hierarchy2"]},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.8,0],"longitude":100.8,"latitude":28.8,"depth":3},"inputs":["directionalLight1"]},"directionalLight1":{"type":"directionalLight","params":{"intensity":0.78,"showHelper":true,"castShadow":true}},"merge1":{"type":"merge","inputs":["polarTransform1","objectProperties1"]},"hierarchy2":{"type":"hierarchy","inputs":["merge1"]},"line1":{"type":"line","params":{"length":15,"pointsCount":4,"origin":[5.6,0.3,-5.5],"direction":[0,0,11]}},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["hierarchy2","line1"]},"copy1":{"type":"copy","inputs":["hierarchy2","line1"]},"spotLight1":{"type":"spotLight","params":{"intensity":40,"angle":12.6,"showHelper":true,"castShadow":1}},"lightMixer1":{"type":"lightMixer","params":{"directionalLight1_int":{"type":"float","default_value":0.78,"options":{"range":[0,2],"rangeLocked":[true,false],"spare":true}},"directionalLight1_col":{"type":"color","default_value":[1,1,1],"options":{"separatorAfter":true,"spare":true}}},"inputs":["copy1"],"flags":{"display":true}}},"params":{"t":[1.4767838881586177,0,0],"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"ground":{"type":"geo","nodes":{"material1":{"type":"material","params":{"material":"../MAT/meshStandardBuilder1"},"inputs":["noise1"],"flags":{"display":true}},"MAT":{"type":"materialsNetwork","nodes":{"meshStandardBuilder1":{"type":"meshStandardBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[null,null,{"index":2,"inputName":"color","node":"mix1","output":"mix"}]},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec","node":"globals1","output":"position"}]},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec3ToFloat1","output":"z"}]},"checkers1":{"type":"checkers","params":{"uv":{"overriden_options":{}},"freq":{"overriden_options":{}},"freqMult":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"uv","node":"floatToVec2_1","output":"vec2"}]},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"value0","node":"constant1","output":"val"},{"index":1,"inputName":"value1","node":"constant2","output":"val"},{"index":2,"inputName":"blend","node":"checkers1","output":"checker"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"constant1":{"type":"constant","params":{"type":4,"color":[0.24313725490196078,0.5098039215686274,0.8549019607843137],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"constant2":{"type":"constant","params":{"type":4,"color":[0.047058823529411764,0.10196078431372549,0.17647058823529413],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}}},"params":{"roughness":0.22},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-main","type":"MeshStandardMaterial","name":"/ground/MAT/meshStandardBuilder1","color":16711422,"roughness":0.22,"metalness":0,"emissive":0,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/ground/MAT/meshStandardBuilder1-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"box1":{"type":"box","params":{"sizes":[9.98,1,9.98],"center":[0,-0.5,0]}},"plane1":{"type":"plane","params":{"size":[100,100],"stepSize":0.86057}},"noise1":{"type":"noise","params":{"amplitude":6,"freq":[0.029999999999999943,-0.17,0.029999999999999943],"useNormals":1},"inputs":["plane1"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.28},"flags":{"display":true}},"spotLight1":{"type":"spotLight","params":{"intensity":3.5,"decay":0.1,"distance":10,"showHelper":1,"castShadow":1}},"polarTransform1":{"type":"polarTransform","params":{"center":["ch(\"../../geo1/tx\")","ch(\"../../geo1/ty\")+1","ch(\"../../geo1/tz\")"],"longitude":108,"latitude":28.8,"depth":3},"inputs":["directionalLight1"]},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"]},"directionalLight1":{"type":"directionalLight","params":{"intensity":5.8,"showHelper":true,"castShadow":1}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","params":{"position":[3.3,3.3,3.3]}},"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[2.3212414945527686,-0.05226780184395743,-3.033070758617219]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["actor2"],"flags":{"display":true}},"actor1":{"type":"actor","nodes":{"onTick1":{"type":"onTick"}},"inputs":["perspectiveCamera1"],"flags":{"bypass":true}},"actor2":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"getObjectWorldPosition1":{"type":"getObjectWorldPosition"},"atan1":{"type":"atan","params":{"val":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"val","node":"divide1","output":"divide"}],"connection_points":{"in":[{"name":"val","type":"float","isArray":false}],"out":[{"name":"atan","type":"float","isArray":false}]}},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec3":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec3","node":"getObjectWorldPosition1","output":"worldPosition"}]},"divide1":{"type":"divide","params":{"div0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"div1":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"div2":{"type":"float","default_value":1,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"div0","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"div1","node":"vec3ToFloat1","output":"z"}],"connection_points":{"in":[{"name":"div0","type":"float","isArray":false},{"name":"div1","type":"float","isArray":false},{"name":"div2","type":"float","isArray":false}],"out":[{"name":"divide","type":"float","isArray":false}]}},"sin2":{"type":"sin","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"sin","type":"float","isArray":false}]}},"cos1":{"type":"cos","params":{"angle":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"angle","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"angle","type":"float","isArray":false}],"out":[{"name":"cos","type":"float","isArray":false}]}},"add1":{"type":"add","params":{"add0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}},"add1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false}},"add2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"atan1","output":"atan"},{"index":1,"inputName":"add1","node":"mult3","output":"product"}],"connection_points":{"in":[{"name":"add0","type":"float","isArray":false},{"name":"add1","type":"float","isArray":false},{"name":"add2","type":"float","isArray":false}],"out":[{"name":"sum","type":"float","isArray":false}]}},"length1":{"type":"length","params":{"v":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false}}},"inputs":[{"index":0,"inputName":"v","node":"floatToVec3_2","output":"vec3"}],"connection_points":{"in":[{"name":"v","type":"Vector3","isArray":false}],"out":[{"name":"val","type":"float","isArray":false}]}},"floatToVec3_2":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},null,{"index":2,"inputName":"z","node":"vec3ToFloat1","output":"z"}]},"floatToVec3_3":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"mult1","output":"product"},null,{"index":2,"inputName":"z","node":"mult2","output":"product"}]},"mult1":{"type":"mult","params":{"mult0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult1":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult2":{"type":"float","default_value":1,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"mult0","node":"sin2","output":"sin"},{"index":1,"inputName":"mult1","node":"length1","output":"val"}],"connection_points":{"in":[{"name":"mult0","type":"float","isArray":false},{"name":"mult1","type":"float","isArray":false},{"name":"mult2","type":"float","isArray":false}],"out":[{"name":"product","type":"float","isArray":false}]}},"mult2":{"type":"mult","params":{"mult0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult1":{"type":"float","default_value":1,"options":{"spare":true,"editable":false}},"mult2":{"type":"float","default_value":1,"options":{"spare":true,"editable":true}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"mult0","node":"cos1","output":"cos"},{"index":1,"inputName":"mult1","node":"length1","output":"val"}],"connection_points":{"in":[{"name":"mult0","type":"float","isArray":false},{"name":"mult1","type":"float","isArray":false},{"name":"mult2","type":"float","isArray":false}],"out":[{"name":"product","type":"float","isArray":false}]}},"setObjectPosition1":{"type":"setObjectPosition","params":{"position":{"overriden_options":{}},"lerp":{"overriden_options":{}},"updateMatrix":{"overriden_options":{}}},"maxInputsCount":5,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"position","node":"add2","output":"sum"}]},"mult3":{"type":"mult","params":{"mult0":{"type":"float","default_value":1,"options":{"spare":true,"editable":false},"overriden_options":{}},"mult1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true},"raw_input":0.04}},"inputs":[{"index":0,"inputName":"mult0","node":"onTick1","output":"delta"}],"connection_points":{"in":[{"name":"mult0","type":"float","isArray":false},{"name":"mult1","type":"float","isArray":false}],"out":[{"name":"product","type":"float","isArray":false}]}},"add2":{"type":"add","params":{"add0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false}},"add1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true}}},"inputs":[{"index":0,"inputName":"add0","node":"floatToVec3_3","output":"vec3"}],"connection_points":{"in":[{"name":"add0","type":"Vector3","isArray":false},{"name":"add1","type":"Vector3","isArray":false}],"out":[{"name":"sum","type":"Vector3","isArray":false}]}}},"inputs":["perspectiveCamera1"],"persisted_config":{"variableNames":["v_POLY_getObjectWorldPosition1_worldPosition","_vec3ToFloat1_vec3","v_POLY_floatToVec3_2_vec3","_length1_v","v_POLY_floatToVec3_3_vec3","_add2_add0","_add2_add1","_setObjectPosition1_position"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["getObjectWorldPosition","globalsTime","globalsTimeDelta","multNumber","divideNumber","floatToVec3","mathFloat_1","lengthVector","addNumber","addVector","setObjectPosition"],"serializedParamConfigs":[],"eventDatas":[]}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"geo2":{"type":"geo","nodes":{"box1":{"type":"box"},"axesHelper1":{"type":"axesHelper"},"transform1":{"type":"transform","params":{"scale":1.54},"inputs":["axesHelper1"],"flags":{"display":true}},"MAT":{"type":"materialsNetwork","nodes":{"meshStandard1":{"type":"meshStandard"},"lineBasic1":{"type":"lineBasic","params":{"lineWidth":10}}}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"SDFFacetAngle":{"overriden_options":{"callback":"{}"}},"SDFMeshesColor":{"overriden_options":{"callback":"{}"}},"SDFWireframe":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1"}},"ui":{"nodes":{"geo1":{"pos":[-300,-400],"nodes":{"sphere1":{"pos":[0,50]},"material1":{"pos":[-50,250]},"MAT":{"pos":[-200,400],"selection":["meshStandard1"],"nodes":{"meshStandard1":{"pos":[0,0]},"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[0,0]},"output1":{"pos":[200,0]},"globals1":{"pos":[-200,0]}}}}},"fileGLTF1":{"pos":[-250,-100]},"materialProperties1":{"pos":[-150,50]},"objectProperties1":{"pos":[-350,250]},"hierarchy1":{"pos":[-300,50]},"transform1":{"pos":[-350,150]},"actor1":{"pos":[-600,900],"nodes":{"onTick1":{"pos":[-100,0]},"setObjectPosition1":{"pos":[500,50]},"floatToVec3_1":{"pos":[200,100]},"sin1":{"pos":[100,100]}}},"polarTransform1":{"pos":[-450,150]},"directionalLight1":{"pos":[-450,-100]},"merge1":{"pos":[-450,500]},"hierarchy2":{"pos":[-450,650]},"line1":{"pos":[-50,700]},"instance1":{"pos":[-300,850]},"copy1":{"pos":[-450,1150]},"spotLight1":{"pos":[-600,0]},"lightMixer1":{"pos":[-500,1250]}}},"ground":{"pos":[-50,-450],"nodes":{"material1":{"pos":[200,250]},"MAT":{"pos":[-200,300],"nodes":{"meshStandardBuilder1":{"pos":[0,200],"nodes":{"globals1":{"pos":[-450,0]},"output1":{"pos":[400,0]},"vec3ToFloat1":{"pos":[-200,200]},"floatToVec2_1":{"pos":[-100,200]},"checkers1":{"pos":[50,200]},"mix1":{"pos":[250,0]},"constant1":{"pos":[50,-150]},"constant2":{"pos":[0,0]}}}}},"box1":{"pos":[0,100]},"plane1":{"pos":[200,-50]},"noise1":{"pos":[200,150]}}},"COP":{"pos":[-300,-50],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[-50,-250],"selection":["polarTransform1","directionalLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[300,-50]},"polarTransform1":{"pos":[250,100]},"merge1":{"pos":[100,300]},"directionalLight1":{"pos":[250,-200]}}},"cameras":{"pos":[-50,-150],"selection":["actor2"],"nodes":{"perspectiveCamera1":{"pos":[-50,-50]},"cameraControls1":{"pos":[-50,300],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}},"actor1":{"pos":[-50,100],"nodes":{"onTick1":{"pos":[-150,-150]}}},"actor2":{"pos":[50,100],"selection":["add2"],"nodes":{"onTick1":{"pos":[-100,0]},"getObjectWorldPosition1":{"pos":[-100,150]},"atan1":{"pos":[350,250]},"vec3ToFloat1":{"pos":[50,200]},"divide1":{"pos":[250,250]},"sin2":{"pos":[600,200]},"cos1":{"pos":[600,300]},"add1":{"pos":[500,200]},"length1":{"pos":[600,450]},"floatToVec3_2":{"pos":[300,350]},"floatToVec3_3":{"pos":[850,200]},"mult1":{"pos":[750,200]},"mult2":{"pos":[800,350]},"setObjectPosition1":{"pos":[1000,-150]},"mult3":{"pos":[200,50]},"add2":{"pos":[1000,100]}}}}},"geo2":{"pos":[150,-250],"nodes":{"box1":{"pos":[0,0]},"axesHelper1":{"pos":[100,-100]},"transform1":{"pos":[100,50]},"MAT":{"pos":[-100,100],"nodes":{"meshStandard1":{"pos":[0,0]},"lineBasic1":{"pos":[-150,150]}}}}}}},"shaders":{"/geo1/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/ground/MAT/meshStandardBuilder1":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <uv2_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <uv2_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULARINTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n\t#ifdef USE_SPECULARCOLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEENCOLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEENROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <uv2_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <bsdfs>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/globals1\n\tv_POLY_globals1_position = vec3(position);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tvec3 transformed = position;\n\tvec3 objectNormal = normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /ground/MAT/meshStandardBuilder1/checkers1\n// https://iquilezles.org/articles/checkerfiltering/\nfloat checkers(vec2 p) {\n\tvec2 s = sign(fract(p*.5)-.5);\n\treturn .5 - .5*s.x*s.y;\n}\nfloat checkersGrad( in vec2 p, in vec2 ddx, in vec2 ddy )\n{\n // filter kernel\n vec2 w = max(abs(ddx), abs(ddy)) + 0.01;\n // analytical integral (box filter)\n vec2 i = 2.0*(abs(fract((p-0.5*w)/2.0)-0.5)-abs(fract((p+0.5*w)/2.0)-0.5))/w;\n // xor pattern\n return 0.5 - 0.5*i.x*i.y;\n}\n\n\n\n\n\n\n\n\n// /ground/MAT/meshStandardBuilder1/globals1\nvarying vec3 v_POLY_globals1_position;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /ground/MAT/meshStandardBuilder1/constant1\n\tvec3 v_POLY_constant1_val = vec3(0.24313725490196078, 0.5098039215686274, 0.8549019607843137);\n\t\n\t// /ground/MAT/meshStandardBuilder1/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.047058823529411764, 0.10196078431372549, 0.17647058823529413);\n\t\n\t// /ground/MAT/meshStandardBuilder1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_globals1_position.x;\n\tfloat v_POLY_vec3ToFloat1_z = v_POLY_globals1_position.z;\n\t\n\t// /ground/MAT/meshStandardBuilder1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_z);\n\t\n\t// /ground/MAT/meshStandardBuilder1/checkers1\n\tvec2 v_POLY_checkers1_coord = v_POLY_floatToVec2_1_vec2*vec2(1.0, 1.0)*1.0;\n\tfloat v_POLY_checkers1_checker = checkersGrad(v_POLY_checkers1_coord, dFdx(v_POLY_checkers1_coord), dFdy(v_POLY_checkers1_coord));\n\t\n\t// /ground/MAT/meshStandardBuilder1/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_constant1_val, v_POLY_constant2_val, v_POLY_checkers1_checker);\n\t\n\t// /ground/MAT/meshStandardBuilder1/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/cameras/actor2":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /cameras/actor2/getObjectWorldPosition1\n\tv_POLY_getObjectWorldPosition1_worldPosition = computed(() =>\n\t\tgetObjectWorldPosition(this.object3D, v_POLY_getObjectWorldPosition1_worldPosition)\n\t);\n\n\t// /cameras/actor2/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\t// /cameras/actor2/vec3ToFloat1\n\tv_POLY_vec3ToFloat1_x = computed(\n\t\t() => _vec3ToFloat1_vec3.copy(this.v_POLY_getObjectWorldPosition1_worldPosition.value).x\n\t);\n\tv_POLY_vec3ToFloat1_z = computed(\n\t\t() => _vec3ToFloat1_vec3.copy(this.v_POLY_getObjectWorldPosition1_worldPosition.value).z\n\t);\n\n\t// /cameras/actor2/mult3\n\tv_POLY_mult3_product = computed(() => multNumber(this.v_POLY_onTick1_delta.value, 0.04));\n\n\t// /cameras/actor2/divide1\n\tv_POLY_divide1_divide = computed(() =>\n\t\tdivideNumber(this.v_POLY_vec3ToFloat1_x.value, this.v_POLY_vec3ToFloat1_z.value, 1.0)\n\t);\n\n\t// /cameras/actor2/floatToVec3_2\n\tv_POLY_floatToVec3_2_vec3 = computed(() =>\n\t\tfloatToVec3(this.v_POLY_vec3ToFloat1_x.value, 0.0, this.v_POLY_vec3ToFloat1_z.value, v_POLY_floatToVec3_2_vec3)\n\t);\n\n\t// /cameras/actor2/atan1\n\tv_POLY_atan1_atan = computed(() => mathFloat_1(Math.atan, this.v_POLY_divide1_divide.value));\n\n\t// /cameras/actor2/length1\n\tv_POLY_length1_val = computed(() => lengthVector(_length1_v.copy(this.v_POLY_floatToVec3_2_vec3.value)));\n\n\t// /cameras/actor2/add1\n\tv_POLY_add1_sum = computed(() => addNumber(this.v_POLY_atan1_atan.value, this.v_POLY_mult3_product.value, 0.0));\n\n\t// /cameras/actor2/sin2\n\tv_POLY_sin2_sin = computed(() => mathFloat_1(Math.sin, this.v_POLY_add1_sum.value));\n\n\t// /cameras/actor2/cos1\n\tv_POLY_cos1_cos = computed(() => mathFloat_1(Math.cos, this.v_POLY_add1_sum.value));\n\n\t// /cameras/actor2/mult1\n\tv_POLY_mult1_product = computed(() => multNumber(this.v_POLY_sin2_sin.value, this.v_POLY_length1_val.value, 1.0));\n\n\t// /cameras/actor2/mult2\n\tv_POLY_mult2_product = computed(() => multNumber(this.v_POLY_cos1_cos.value, this.v_POLY_length1_val.value, 1.0));\n\n\t// /cameras/actor2/floatToVec3_3\n\tv_POLY_floatToVec3_3_vec3 = computed(() =>\n\t\tfloatToVec3(this.v_POLY_mult1_product.value, 0.0, this.v_POLY_mult2_product.value, v_POLY_floatToVec3_3_vec3)\n\t);\n\n\t// /cameras/actor2/add2\n\tv_POLY_add2_sum = computed(() =>\n\t\taddVector(_add2_add0.copy(this.v_POLY_floatToVec3_3_vec3.value), _add2_add1.set(0, 0, 0))\n\t);\n\n\tconstructor(scene, object3D) {\n\t\tsuper(scene, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /cameras/actor2/onTick1\n\tonTick1() {\n\t\tthis.setObjectPosition1(0);\n\t}\n\n\t// /cameras/actor2/setObjectPosition1\n\tsetObjectPosition1() {\n\t\tsetObjectPosition(this.object3D, _setObjectPosition1_position.copy(this.v_POLY_add2_sum.value), 1.0, true);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.2984375,"split_panel0":{"split_ratio":0.4890929965556831,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera1","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false,"initLayoutData":{"camera":{"position":{"x":-150,"y":-50},"zoom":1},"history":{"2":{"position":{"x":0,"y":0},"zoom":1},"36":{"position":{"x":100,"y":-125},"zoom":1},"96":{"position":{"x":100,"y":-200},"zoom":1},"159":{"position":{"x":-50,"y":50},"zoom":1},"219":{"position":{"x":0,"y":-50},"zoom":1},"406":{"position":{"x":0,"y":-200},"zoom":1},"1002":{"position":{"x":0,"y":0},"zoom":1},"1027":{"position":{"x":0,"y":0},"zoom":1},"1133":{"position":{"x":0,"y":0},"zoom":1},"1219":{"position":{"x":-150,"y":-50},"zoom":1},"1328":{"position":{"x":-150,"y":-50},"zoom":1},"1594":{"position":{"x":-150,"y":-50},"zoom":1},"1652":{"position":{"x":0,"y":0},"zoom":1},"1804":{"position":{"x":-150,"y":-50},"zoom":1},"1937":{"position":{"x":-150,"y":-50},"zoom":1},"2179":{"position":{"x":-150,"y":-50},"zoom":1}},"paramsDisplayed":false,"linkIndex":1}}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":null,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"split_ratio":0.941351150705271,"split_panel0":{"panelTypes":["viewer","network"],"currentPanelIndex":1,"panel_data":{"camera":{"position":{"x":-507.7926614404172,"y":-139.0508112202751},"zoom":1.0222221069335937},"history":{"2":{"position":{"x":-132.4260545521523,"y":132.14168375243395},"zoom":0.7402737005972982},"36":{"position":{"x":181.5068416177026,"y":-644.073591106706},"zoom":0.44003309837202587},"96":{"position":{"x":-209.7826436336681,"y":-290.2174014792788},"zoom":0.9199998962402339},"159":{"position":{"x":-264.130458932746,"y":-123.91306309258562},"zoom":0.8279999066162106},"219":{"position":{"x":84.22585490981824,"y":-59.897827203256746},"zoom":1.2620026011525847},"406":{"position":{"x":0,"y":-200},"zoom":0.9199998962402339},"1002":{"position":{"x":0,"y":0},"zoom":0.6036119319232176},"1027":{"position":{"x":-116.97291559452053,"y":-81.58066921159522},"zoom":1.5580279026575126},"1133":{"position":{"x":0,"y":0},"zoom":0.9199998962402339},"1219":{"position":{"x":-255.69916431269735,"y":-61.033749617355255},"zoom":0.8279999066162111},"1329":{"position":{"x":-507.7926614404172,"y":-139.0508112202751},"zoom":1.0222221069335937},"1594":{"position":{"x":-153.64941868551585,"y":71.68848675473602},"zoom":1.1358023410373268},"1652":{"position":{"x":0,"y":0},"zoom":1.2620026011525847},"1804":{"position":{"x":-97.18144934743395,"y":-253.12384444542928},"zoom":1.015464609872837},"1937":{"position":{"x":-155.54673975600915,"y":0.7130491977979432},"zoom":0.7451999159545897},"2179":{"position":{"x":-444.20569774719064,"y":-138.07255024037931},"zoom":1.0222221069335937}},"paramsDisplayed":false,"linkIndex":1}},"split_panel1":{"panelTypes":["network","params","viewer","nodeDocs","shaderCodePreview"],"currentPanelIndex":3,"panel_data":{"linkIndex":1}},"split_mode":"horizontal"},"split_mode":"horizontal"},"currentNodes":["/cameras/actor2","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/","/lights","/","/cameras","/cameras/actor2"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":4,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"createExport":false,"checkRemoteAssetsUse":true,"minimizeFilesCount":false,"compressJs":true,"createZip":false,"runPostExportCommand":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/lineBasic;mat/meshLambertBuilder;mat/meshStandard;mat/meshStandardBuilder;obj/copNetwork;obj/geo;sop/actor;sop/axesHelper;sop/box;sop/cameraControls;sop/copy;sop/directionalLight;sop/fileGLTF;sop/hemisphereLight;sop/hierarchy;sop/instance;sop/lightMixer;sop/line;sop/material;sop/materialProperties;sop/materialsNetwork;sop/merge;sop/noise;sop/objectProperties;sop/perspectiveCamera;sop/plane;sop/polarTransform;sop/sphere;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;GL_MESH_STANDARD;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/sphere1":"sop/sphere","/geo1/material1":"sop/material","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshStandard1":"mat/meshStandard","/geo1/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/geo1/fileGLTF1":"sop/fileGLTF","/geo1/materialProperties1":"sop/materialProperties","/geo1/objectProperties1":"sop/objectProperties","/geo1/hierarchy1":"sop/hierarchy","/geo1/transform1":"sop/transform","/geo1/actor1":"sop/actor","/geo1/polarTransform1":"sop/polarTransform","/geo1/directionalLight1":"sop/directionalLight","/geo1/merge1":"sop/merge","/geo1/hierarchy2":"sop/hierarchy","/geo1/line1":"sop/line","/geo1/instance1":"sop/instance","/geo1/copy1":"sop/copy","/geo1/spotLight1":"sop/spotLight","/geo1/lightMixer1":"sop/lightMixer","/ground":"obj/geo","/ground/material1":"sop/material","/ground/MAT":"sop/materialsNetwork","/ground/MAT/meshStandardBuilder1":"mat/meshStandardBuilder","/ground/box1":"sop/box","/ground/plane1":"sop/plane","/ground/noise1":"sop/noise","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/polarTransform1":"sop/polarTransform","/lights/merge1":"sop/merge","/lights/directionalLight1":"sop/directionalLight","/cameras":"obj/geo","/cameras/perspectiveCamera1":"sop/perspectiveCamera","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls","/cameras/actor1":"sop/actor","/cameras/actor2":"sop/actor","/geo2":"obj/geo","/geo2/box1":"sop/box","/geo2/axesHelper1":"sop/axesHelper","/geo2/transform1":"sop/transform","/geo2/MAT":"sop/materialsNetwork","/geo2/MAT/meshStandard1":"mat/meshStandard","/geo2/MAT/lineBasic1":"mat/lineBasic"}
Js version
Editor version
Engine version
Logout
0%
There was a problem displaying your scene:
view scene source