Name
*
Code
{"properties":{"frame":0,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_MAIN","versions":{"polygonjs":"1.5.9"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"plane1":{"type":"plane","params":{"direction":[0,0,1],"center":[0,0.5,0]}},"transform1":{"type":"transform","params":{"t":[0,0.25,0]},"inputs":["transform2"]},"transform2":{"type":"transform","params":{"s":[4,2,1]},"inputs":["plane1"]},"sphere1":{"type":"sphere","params":{"radius":0.02,"resolution":[7,7],"phiLength":"$PI"}},"instance1":{"type":"instance","params":{"attributesToCopy":"instance* restP power light","material":"../MAT/meshStandardBuilder_INSTANCES"},"inputs":["sphere1","attribCreate2"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandardBuilder_PARTICLES":{"type":"meshStandardBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"},{"index":2,"inputName":"color","node":"mix1","output":"mix"}]},"instanceTransform1":{"type":"instanceTransform"},"attribute1":{"type":"attribute","params":{"name":"power"},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"constant1":{"type":"constant","params":{"type":4,"color":[0.0015176349176470587,0,0.02217388478862708],"asColor":1},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"constant2":{"type":"constant","params":{"type":4,"color":[0.12213877222015301,0.4452011945063733,0.5647115056965487],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value0","node":"mix2","output":"mix"},{"index":1,"inputName":"value1","node":"multScalar2","output":"val"},{"index":2,"inputName":"blend","node":"attribute1","output":"val"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"attribute2":{"type":"attribute","params":{"name":"light"},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"constant3":{"type":"constant","params":{"type":4,"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"constant4":{"type":"constant","params":{"type":4,"color":[0.12213877222015301,0.4452011945063733,0.5647115056965487],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"mix2":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value0","node":"constant2","output":"val"},{"index":1,"inputName":"value1","node":"multScalar1","output":"val"},{"index":2,"inputName":"blend","node":"attribute2","output":"val"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"multScalar1":{"type":"multScalar","params":{"value":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":1.8}},"inputs":[{"index":0,"inputName":"value","node":"constant2","output":"val"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"mult","type":"float"}],"out":[{"name":"val","type":"vec3"}]}},"multScalar2":{"type":"multScalar","params":{"value":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.33}},"inputs":[{"index":0,"inputName":"value","node":"constant2","output":"val"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"mult","type":"float"}],"out":[{"name":"val","type":"vec3"}]}}},"params":{"emissive":[1,1,1],"emissiveIntensity":0,"useEnvMap":1,"envMap":"../../../COP/envMap"},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-main","type":"MeshStandardMaterial","color":16777215,"roughness":1,"metalness":0,"emissive":16777215,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}},"meshStandardBuilder_INSTANCES":{"type":"meshStandardBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"instanceTransform1":{"type":"instanceTransform"}},"params":{"useEnvMap":true,"envMap":"../../../COP/envMap","metalness":1,"roughness":0},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-main","type":"MeshStandardMaterial","color":16777215,"roughness":0,"metalness":1,"emissive":0,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"actor_particles1":{"type":"actor","nodes":{"particlesSystemReset1":{"type":"particlesSystemReset","inputs":[{"index":0,"inputName":"trigger","node":"onScenePause1","output":"trigger"}]},"onScenePause1":{"type":"onScenePause"},"particlesSystemStepSimulation1":{"type":"particlesSystemStepSimulation","maxInputsCount":2,"inputs":[{"index":0,"inputName":"trigger","node":"setParam1","output":"trigger"}],"connection_points":{"in":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Object3D","type":"Object3D","isArray":false}],"out":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Object3D","type":"Object3D","isArray":false},{"name":"","type":"Texture","isArray":false}]}},"onTick1":{"type":"onTick"},"rayFromCursor1":{"type":"rayFromCursor"},"rayIntersectPlane1":{"type":"rayIntersectPlane","inputs":[{"index":0,"inputName":"Ray","node":"rayFromCursor1","output":"Ray"},{"index":1,"inputName":"Plane","node":"plane1","output":"Plane"}]},"plane1":{"type":"plane","params":{"normal":[0,0,1]}},"setParam1":{"type":"setParam","params":{"type":5,"Param":{"type":"param_path","default_value":"","options":{"spare":true,"editable":true,"computeOnDirty":false,"dependentOnFoundParam":false},"raw_input":"../../particlesSystemGpu1/cursor"},"lerp":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"val":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":4,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,null,{"index":3,"inputName":"val","node":"floatToVec2_1","output":"vec2"}],"connection_points":{"in":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Param","type":"Param","isArray":false},{"name":"lerp","type":"float","isArray":false},{"name":"val","type":"Vector2","isArray":false}],"out":[{"name":"trigger","type":"trigger","isArray":false}]}},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec3":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec3","node":"rayIntersectPlane1","output":"position"}]},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec3ToFloat1","output":"y"}]}},"inputs":["instance1"],"persisted_config":{"variableNames":["VAR__plane1_normal","VAR__plane1__1","VAR__rayIntersectPlane1_","VAR__vec3ToFloat1_vec3","VAR__floatToVec2_1_","VAR__setParam1_val"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Plane","data":{"normal":[1,0,0],"constant":0}},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector2","data":[0,0]},{"type":"Vector2","data":[0,0]}],"functionNames":["globalsRayFromCursor","planeSet","rayIntersectPlane","floatToVec2","globalsTime","globalsTimeDelta","particlesSystemReset","getParam","setParamVector2","particlesSystemStepSimulation"],"serializedParamConfigs":[],"eventDatas":[{"type":"pointermove","emitter":"canvas","jsType":"rayFromCursor"},{"type":"touchmove","emitter":"canvas","jsType":"rayFromCursor"}]}},"restAttributes1":{"type":"restAttributes","params":{"tnormal":0},"inputs":["pointBuilder1"]},"attribCreate1":{"type":"attribCreate","params":{"name":"power"},"inputs":["restAttributes1"]},"scatter2":{"type":"scatter","params":{"pointsCount":40000},"inputs":["transform1"]},"pointBuilder1":{"type":"pointBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"add1","output":"sum"}]},"add1":{"type":"add","params":{"add0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"globals1","output":"position"},{"index":1,"inputName":"add1","node":"floatToVec3_1","output":"vec3"}],"connection_points":{"in":[{"name":"add0","type":"Vector3","isArray":false},{"name":"add1","type":"Vector3","isArray":false},{"name":"add2","type":"Vector3","isArray":false}],"out":[{"name":"sum","type":"Vector3","isArray":false}]}},"attribute1":{"type":"attribute","params":{"name":"idn","type":1},"connection_points":{"in":[],"out":[{"name":"val","type":"float","isArray":false}]}},"rand1":{"type":"rand","params":{"value0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value0","node":"attribute1","output":"val"}],"connection_points":{"in":[{"name":"value0","type":"float","isArray":false},{"name":"value1","type":"float","isArray":false}],"out":[{"name":"rand","type":"float","isArray":false}]}},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,null,{"index":2,"inputName":"z","node":"multAdd1","output":"val"}]},"multAdd1":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":-0.5},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"rand1","output":"rand"}],"connection_points":{"in":[{"name":"value","type":"float","isArray":false},{"name":"preAdd","type":"float","isArray":false},{"name":"mult","type":"float","isArray":false},{"name":"postAdd","type":"float","isArray":false}],"out":[{"name":"val","type":"float","isArray":false}]}}},"inputs":["attribDelete1"],"persisted_config":{"variableNames":["v_POLY_globals1_position","VAR__floatToVec3_1_","VAR__add1_add0","VAR__add1_add1","VAR__add1_add2"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["rand","mathFloat_2","multAdd","mathFloat_4","floatToVec3","addVector"],"serializedParamConfigs":[],"attributesData":{"read":[{"attribName":"idn","attribType":"float"}],"write":[]}}},"attribCreate2":{"type":"attribCreate","params":{"name":"light"},"inputs":["attribCreate1"]},"particlesSystemGpu1":{"type":"particlesSystemGpu","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output"},"noise1":{"type":"noise","params":{"octaves":7,"amp":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":[0.1,0.1,0.1]},"position":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"freq":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":[0.30000000000000004,0.30000000000000004,0.30000000000000004]},"offset":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":4,"inputs":[{"index":0,"inputName":"amp","node":"multAdd2","output":"val"},{"index":1,"inputName":"position","node":"attribute1","output":"val"},null,{"index":3,"inputName":"offset","node":"floatToVec3_2","output":"vec3"}],"connection_points":{"in":[{"name":"amp","type":"vec3"},{"name":"position","type":"vec3"},{"name":"freq","type":"vec3"},{"name":"offset","type":"vec3"}],"out":[{"name":"noise","type":"vec3"}]}},"add1":{"type":"add","params":{"add0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add3":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":4,"inputs":[{"index":0,"inputName":"add0","node":"attribute3","output":"val"},{"index":1,"inputName":"add1","node":"floatToVec3_3","output":"vec3"},{"index":2,"inputName":"add2","node":"noise1","output":"noise"}],"connection_points":{"in":[{"name":"add0","type":"vec3"},{"name":"add1","type":"vec3"},{"name":"add2","type":"vec3"},{"name":"add3","type":"vec3"}],"out":[{"name":"sum","type":"vec3"}]}},"attribute1":{"type":"attribute","params":{"name":"instancePosition","type":2,"texportWhenConnected":1,"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"attribute2":{"type":"attribute","params":{"name":"instancePosition","type":2,"texportWhenConnected":1,"exportWhenConnected":true,"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"inputs":[{"index":0,"inputName":"in","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"param1":{"type":"param","params":{"name":"cursor","type":3},"connection_points":{"in":[],"out":[{"name":"val","type":"vec2"}]}},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec","node":"attribute1","output":"val"}]},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec3ToFloat1","output":"y"}]},"distance1":{"type":"distance","params":{"p0":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"p1":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"p0","node":"floatToVec2_1","output":"vec2"},{"index":1,"inputName":"p1","node":"param1","output":"val"}],"connection_points":{"in":[{"name":"p0","type":"vec2"},{"name":"p1","type":"vec2"}],"out":[{"name":"val","type":"float"}]}},"smoothstep1":{"type":"smoothstep","params":{"edge0":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.35},"edge1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.03},"x":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[null,null,{"index":2,"inputName":"x","node":"distance1","output":"val"}],"connection_points":{"in":[{"name":"edge0","type":"float"},{"name":"edge1","type":"float"},{"name":"x","type":"float"}],"out":[{"name":"val","type":"float"}]}},"add2":{"type":"add","params":{"add0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"clamp1","output":"val"},{"index":1,"inputName":"add1","node":"multAdd1","output":"val"}],"connection_points":{"in":[{"name":"add0","type":"float"},{"name":"add1","type":"float"},{"name":"add2","type":"float"}],"out":[{"name":"sum","type":"float"}]}},"multAdd1":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.15},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"smoothstep1","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"constant1":{"type":"constant","params":{"float":0.003},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"subtract1":{"type":"subtract","params":{"sub0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"sub0","node":"attribute_POWER_in","output":"val"},{"index":1,"inputName":"sub1","node":"constant1","output":"val"}],"connection_points":{"in":[{"name":"sub0","type":"float"},{"name":"sub1","type":"float"},{"name":"sub2","type":"float"}],"out":[{"name":"subtract","type":"float"}]}},"attribute_POWER_out":{"type":"attribute","params":{"name":"power","texportWhenConnected":1,"exportWhenConnected":true,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"inputs":[{"index":0,"inputName":"in","node":"clamp2","output":"val"}],"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}},"attribute_POWER_in":{"type":"attribute","params":{"name":"power","texportWhenConnected":1,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"multAdd6","output":"val"},{"index":1,"inputName":"y","node":"multAdd6","output":"val"},{"index":2,"inputName":"z","node":"multAdd6","output":"val"}]},"clamp1":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"subtract1","output":"subtract"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"clamp2":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"add2","output":"sum"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"multAdd2":{"type":"multAdd","params":{"value":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":[0.30000000000000004,0.30000000000000004,0.30000000000000004]},"postAdd":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"floatToVec3_1","output":"vec3"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"preAdd","type":"vec3"},{"name":"mult","type":"vec3"},{"name":"postAdd","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"multAdd3":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.09},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"globals1","output":"time"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"floatToVec3_2":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,{"index":1,"inputName":"y","node":"multAdd3","output":"val"},{"index":2,"inputName":"z","node":"multAdd5","output":"val"}]},"attribute3":{"type":"attribute","params":{"name":"restP","type":2,"texportWhenConnected":1,"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":1}},"inputs":[{"index":0,"inputName":"value0","node":"attribute3","output":"val"},{"index":1,"inputName":"value1","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"multAdd5":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.01},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"globals1","output":"time"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"floatToVec3_3":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,null,{"index":2,"inputName":"z","node":"multAdd4","output":"val"}]},"multAdd4":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.15},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"attribute_POWER_in","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"multAdd6":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.5},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"attribute_POWER_in","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"constant2":{"type":"constant","params":{"float":0.006},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"subtract2":{"type":"subtract","params":{"sub0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"sub0","node":"attribute_LIGHT_in","output":"val"},{"index":1,"inputName":"sub1","node":"constant2","output":"val"}],"connection_points":{"in":[{"name":"sub0","type":"float"},{"name":"sub1","type":"float"},{"name":"sub2","type":"float"}],"out":[{"name":"subtract","type":"float"}]}},"clamp3":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"subtract2","output":"subtract"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"smoothstep2":{"type":"smoothstep","params":{"edge0":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.35},"edge1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.27},"x":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[null,null,{"index":2,"inputName":"x","node":"distance1","output":"val"}],"connection_points":{"in":[{"name":"edge0","type":"float"},{"name":"edge1","type":"float"},{"name":"x","type":"float"}],"out":[{"name":"val","type":"float"}]}},"multAdd7":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.15},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"min1","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"min1":{"type":"min","params":{"in0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"in1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"in0","node":"smoothstep2","output":"val"},{"index":1,"inputName":"in1","node":"smoothstep3","output":"val"}],"connection_points":{"in":[{"name":"in0","type":"float"},{"name":"in1","type":"float"}],"out":[{"name":"val","type":"float"}]}},"smoothstep3":{"type":"smoothstep","params":{"edge0":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.21},"edge1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.27},"x":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[null,null,{"index":2,"inputName":"x","node":"distance1","output":"val"}],"connection_points":{"in":[{"name":"edge0","type":"float"},{"name":"edge1","type":"float"},{"name":"x","type":"float"}],"out":[{"name":"val","type":"float"}]}},"add3":{"type":"add","params":{"add0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"clamp3","output":"val"},{"index":1,"inputName":"add1","node":"multAdd7","output":"val"}],"connection_points":{"in":[{"name":"add0","type":"float"},{"name":"add1","type":"float"},{"name":"add2","type":"float"}],"out":[{"name":"sum","type":"float"}]}},"clamp4":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"add3","output":"sum"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"attribute_LIGHT_in":{"type":"attribute","params":{"name":"light","texportWhenConnected":1,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}},"attribute_LIGHT_out":{"type":"attribute","params":{"name":"light","texportWhenConnected":1,"exportWhenConnected":true,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"inputs":[{"index":0,"inputName":"in","node":"clamp4","output":"val"}],"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}}},"params":{"material":"../MAT/meshStandardBuilder_PARTICLES","cursor":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"computeOnDirty":true,"cook":false,"dependentOnFoundNode":true},"raw_input":[-17.520323941393166,0],"overriden_options":{"callback":"{}"}}},"inputs":["actor_particles1"],"flags":{"display":true},"persisted_config":{"texture_allocations":{"writable":[{"instancePosition_x_power":[{"name":"instancePosition","size":3,"nodes":["/geo1/particlesSystemGpu1/attribute2","/geo1/particlesSystemGpu1/attribute1"]},{"name":"power","size":1,"nodes":["/geo1/particlesSystemGpu1/attribute_POWER_out","/geo1/particlesSystemGpu1/attribute_POWER_in"]}]},{"light":[{"name":"light","size":1,"nodes":["/geo1/particlesSystemGpu1/attribute_LIGHT_out","/geo1/particlesSystemGpu1/attribute_LIGHT_in"]}]}],"readonly":[{"restP":[{"name":"restP","size":3,"nodes":["/geo1/particlesSystemGpu1/attribute3"]}]}]},"param_uniform_pairs":[["cursor","v_POLY_param_cursor"]],"uniforms_owner":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/particlesSystemGpu1-main","type":"ShaderMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"forceSinglePass":true,"fog":false,"glslVersion":null,"uniforms":{"v_POLY_param_cursor":{"type":"v2","value":[-17.520323941393166,0]}},"vertexShader":"void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}","fragmentShader":"void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}","lights":false,"clipping":false}}},"attribDelete1":{"type":"attribDelete","params":{"name":"normal"},"inputs":["scatter2"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.52}},"spotLight1":{"type":"spotLight","params":{"decay":0.1,"distance":10,"castShadow":1}},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1","polarTransform2"],"flags":{"display":true}},"areaLight1":{"type":"areaLight","params":{"width":3,"height":3,"showHelper":1}},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.7,1.4469847266117422],"latitude":90,"depth":1.8},"inputs":["merge2"]},"areaLight2":{"type":"areaLight","params":{"color":[0.0069954101845983935,0.23839757380151394,0.8713671191959567],"intensity":9.6,"width":4,"height":2,"showHelper":true}},"polarTransform2":{"type":"polarTransform","params":{"center":[0,1.2731049130670544,1.6569847266117421],"longitude":180,"depth":2},"inputs":["areaLight2"]},"box1":{"type":"box","params":{"sizes":[0.02,3,0.02]}},"copy1":{"type":"copy","params":{"count":5,"t":[0.5,0,0]},"inputs":["box1"]},"merge2":{"type":"merge","inputs":["areaLight1","material1"]},"merge3":{"type":"merge","params":{"compact":1},"inputs":["transform1"]},"material1":{"type":"material","params":{"material":"../MAT/meshStandard1"},"inputs":["merge3"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandard1":{"type":"meshStandard","params":{"color":[0,0,0]}}}},"transform1":{"type":"transform","params":{"t":["-$CEX","-$CEY","-$CEZ"]},"inputs":["copy1"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[-0.31394104377123894,0.956150155257783,0.12384628786311258]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera_DEBUG"]},"perspectiveCamera_DEBUG":{"type":"perspectiveCamera","params":{"position":[-0.3548099268238594,1.645431172283756,3.2870057456102977],"rotation":[-9.936173844027898,-0.6445320755488696,-0.1129056955638231]}},"cameraControls2":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[0.019486627727060557,1.3984727366713416,0.6685507303243576]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera_MAIN"]},"perspectiveCamera_MAIN":{"type":"perspectiveCamera","params":{"position":[0,0.93,3.9]}},"merge1":{"type":"merge","inputs":["cameraControls1","cameraControls2"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"env":{"type":"geo","nodes":{"MAT":{"type":"materialsNetwork","nodes":{"meshStandard_WALLS":{"type":"meshStandard","params":{"color":[0.1878207722902346,0.1878207722902346,0.1878207722902346],"useEnvMap":1,"envMap":"../../../COP/envMap","envMapIntensity":0.13,"metalness":1,"useRoughnessMap":1,"roughnessMap":"../../COP/image1","roughness":0.92}},"meshStandard_PEOPLE":{"type":"meshStandard","params":{"color":[0.036889450395083165,0.036889450395083165,0.036889450395083165]}}}},"box1":{"type":"box","params":{"sizes":[9.98,1,9.98],"center":[0,-0.5,0]}},"box2":{"type":"box","params":{"center":[0,0.5,-0.5]}},"transform1":{"type":"transform","params":{"s":[10,3.5,1]},"inputs":["box2"]},"transform2":{"type":"transform","params":{"t":[0,0.25,0],"s":[4,2,0.5]},"inputs":["box2"]},"boolean1":{"type":"boolean","params":{"operation":1,"additionalAttributes":"uv"},"inputs":["transform1","transform2"]},"merge1":{"type":"merge","params":{"compact":1},"inputs":["box1","boolean1","transform3"]},"material1":{"type":"material","params":{"material":"../MAT/meshStandard_WALLS"},"inputs":["merge1"]},"box3":{"type":"box","params":{"center":[0,3.5,0]}},"transform3":{"type":"transform","params":{"s":[10,1,7.2309526734891145]},"inputs":["box3"]},"COP":{"type":"copNetwork","nodes":{"image1":{"type":"image","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/textures/resources/polyhaven.com/aerial_rocks_02/2k/rough.jpg","tminFilter":1,"tmagFilter":1,"tanisotropy":1,"useRendererMaxAnisotropy":1}}}},"fileOBJ1":{"type":"fileOBJ","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/resources/renderpeople.com/rp_dennis_posed_004_OBJ/rp_dennis_posed_004_2k.obj"}},"transform4":{"type":"transform","params":{"applyOn":1,"t":[-1.10647542189473,0,1.1702537307491765],"r":[0,180,0],"scale":0.3},"inputs":["fileOBJ1"]},"fileOBJ3":{"type":"fileOBJ","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/resources/renderpeople.com/rp_mei_posed_001_OBJ/rp_mei_posed_001_2k.obj"}},"transform6":{"type":"transform","params":{"applyOn":1,"t":[-1.5189097881388562,0,1.1547135065016478],"r":[0,180,0],"scale":0.29},"inputs":["fileOBJ3"]},"merge2":{"type":"merge","inputs":["transform4","transform6"]},"material2":{"type":"material","params":{"group":"*","material":"../MAT/meshStandard_PEOPLE"},"inputs":["merge2"]},"merge3":{"type":"merge","inputs":["material1","material2"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"bgColor":[0,0,0],"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_MAIN"}},"ui":{"nodes":{"geo1":{"pos":[-50,-350],"nodes":{"plane1":{"pos":[-100,-250]},"transform1":{"pos":[-100,150]},"transform2":{"pos":[-100,0]},"sphere1":{"pos":[-500,1000]},"instance1":{"pos":[-300,1300]},"MAT":{"pos":[-650,1300],"nodes":{"meshStandardBuilder_PARTICLES":{"pos":[0,250],"nodes":{"globals1":{"pos":[-850,-400]},"output1":{"pos":[250,-150]},"instanceTransform1":{"pos":[50,-350]},"attribute1":{"pos":[-350,50]},"constant1":{"pos":[-350,-50]},"constant2":{"pos":[-700,-350]},"mix1":{"pos":[-150,-150]},"attribute2":{"pos":[-600,-50]},"constant3":{"pos":[-350,250]},"constant4":{"pos":[-350,350]},"mix2":{"pos":[-450,-350]},"multScalar1":{"pos":[-600,-200]},"multScalar2":{"pos":[-450,-100]}}},"meshStandardBuilder_INSTANCES":{"pos":[0,100],"nodes":{"globals1":{"pos":[-200,0]},"output1":{"pos":[200,0]},"instanceTransform1":{"pos":[0,0]}}}}},"actor_particles1":{"pos":[-300,1450],"selection":["setParam1"],"nodes":{"particlesSystemReset1":{"pos":[100,-100]},"onScenePause1":{"pos":[-100,-100]},"particlesSystemStepSimulation1":{"pos":[750,300]},"onTick1":{"pos":[-100,100]},"rayFromCursor1":{"pos":[-150,300]},"rayIntersectPlane1":{"pos":[50,400]},"plane1":{"pos":[-150,500]},"setParam1":{"pos":[550,300]},"vec3ToFloat1":{"pos":[200,400]},"floatToVec2_1":{"pos":[350,400]}}},"restAttributes1":{"pos":[-150,750]},"attribCreate1":{"pos":[-150,900]},"scatter2":{"pos":[-100,250]},"pointBuilder1":{"pos":[-150,600],"nodes":{"globals1":{"pos":[-400,0]},"output1":{"pos":[0,0]},"add1":{"pos":[-200,0]},"attribute1":{"pos":[-750,200]},"rand1":{"pos":[-550,200]},"floatToVec3_1":{"pos":[-300,200]},"multAdd1":{"pos":[-450,200]}}},"attribCreate2":{"pos":[-150,1050]},"particlesSystemGpu1":{"pos":[-300,1600],"nodes":{"globals1":{"pos":[-300,-200]},"output1":{"pos":[1500,-400]},"noise1":{"pos":[450,-450]},"add1":{"pos":[1050,-450]},"attribute1":{"pos":[-500,-450]},"attribute2":{"pos":[1500,-600]},"param1":{"pos":[-300,1100]},"vec3ToFloat1":{"pos":[-400,900]},"floatToVec2_1":{"pos":[-300,900]},"distance1":{"pos":[-200,1000]},"smoothstep1":{"pos":[-50,1000]},"add2":{"pos":[500,900]},"multAdd1":{"pos":[100,1000]},"constant1":{"pos":[0,400]},"subtract1":{"pos":[150,250]},"attribute_POWER_out":{"pos":[900,900]},"attribute_POWER_in":{"pos":[-250,250]},"floatToVec3_1":{"pos":[250,-200]},"clamp1":{"pos":[300,250]},"clamp2":{"pos":[700,900]},"multAdd2":{"pos":[350,-200]},"multAdd3":{"pos":[-150,-150]},"floatToVec3_2":{"pos":[0,-150]},"attribute3":{"pos":[750,-600]},"mix1":{"pos":[1250,-600]},"multAdd5":{"pos":[-150,0]},"floatToVec3_3":{"pos":[600,-50]},"multAdd4":{"pos":[500,-50]},"multAdd6":{"pos":[100,-50]},"constant2":{"pos":[0,700]},"subtract2":{"pos":[150,550]},"clamp3":{"pos":[300,550]},"smoothstep2":{"pos":[-50,1250]},"multAdd7":{"pos":[250,1250]},"min1":{"pos":[100,1300]},"smoothstep3":{"pos":[-50,1400]},"add3":{"pos":[500,1250]},"clamp4":{"pos":[700,1250]},"attribute_LIGHT_in":{"pos":[-250,550]},"attribute_LIGHT_out":{"pos":[900,1250]}}},"attribDelete1":{"pos":[-100,400]}}},"COP":{"pos":[-300,-50],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[-50,-250],"selection":["areaLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[750,0]},"merge1":{"pos":[100,400]},"areaLight1":{"pos":[200,-550]},"polarTransform1":{"pos":[300,100]},"areaLight2":{"pos":[550,-100]},"polarTransform2":{"pos":[550,100]},"box1":{"pos":[450,-800]},"copy1":{"pos":[450,-650]},"merge2":{"pos":[300,-50]},"merge3":{"pos":[450,-350]},"material1":{"pos":[450,-200]},"MAT":{"pos":[-150,-200],"nodes":{"meshStandard1":{"pos":[-100,50]}}},"transform1":{"pos":[450,-500]}}},"cameras":{"pos":[-50,-150],"selection":["perspectiveCamera_MAIN"],"nodes":{"cameraControls1":{"pos":[0,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}},"perspectiveCamera_DEBUG":{"pos":[0,-50]},"cameraControls2":{"pos":[300,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}},"perspectiveCamera_MAIN":{"pos":[300,-50]},"merge1":{"pos":[100,350]}}},"env":{"pos":[-50,-450],"nodes":{"MAT":{"pos":[-450,550],"selection":["meshStandard_PEOPLE"],"nodes":{"meshStandard_WALLS":{"pos":[0,300]},"meshStandard_PEOPLE":{"pos":[0,500]}}},"box1":{"pos":[-200,50]},"box2":{"pos":[250,50]},"transform1":{"pos":[250,300]},"transform2":{"pos":[550,300]},"boolean1":{"pos":[300,500]},"merge1":{"pos":[0,750]},"material1":{"pos":[0,950]},"box3":{"pos":[0,200]},"transform3":{"pos":[0,350]},"COP":{"pos":[-450,750],"nodes":{"image1":{"pos":[-300,0]}}},"fileOBJ1":{"pos":[800,500]},"transform4":{"pos":[800,700]},"fileOBJ3":{"pos":[1300,500]},"transform6":{"pos":[1300,700]},"merge2":{"pos":[1050,950]},"material2":{"pos":[1050,1150]},"merge3":{"pos":[50,1400]}}}}},"shaders":{"/geo1/MAT/meshStandardBuilder_PARTICLES":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef USE_SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULAR_COLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/geo1/MAT/meshStandardBuilder_INSTANCES":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef USE_SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULAR_COLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/geo1/particlesSystemGpu1":{"instancePosition_x_power":"#include <common>\n\n// removed:\n//// INSERT DEFINE\n\n\n\n// /geo1/particlesSystemGpu1/noise1\n// Modulo 289 without a division (only multiplications)\nfloat mod289(float x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec2 mod289(vec2 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec3 mod289(vec3 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec4 mod289(vec4 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\n// Modulo 7 without a division\nvec3 mod7(vec3 x) {\n return x - floor(x * (1.0 / 7.0)) * 7.0;\n}\n\n// Permutation polynomial: (34x^2 + x) mod 289\nfloat permute(float x) {\n return mod289(((x*34.0)+1.0)*x);\n}\nvec3 permute(vec3 x) {\n return mod289((34.0 * x + 1.0) * x);\n}\nvec4 permute(vec4 x) {\n return mod289(((x*34.0)+1.0)*x);\n}\n\nfloat taylorInvSqrt(float r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\nvec4 taylorInvSqrt(vec4 r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\n\nvec2 fade(vec2 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec3 fade(vec3 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec4 fade(vec4 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\n//\n// Description : Array and textureless GLSL 2D/3D/4D simplex \n// noise functions.\n// Author : Ian McEwan, Ashima Arts.\n// Maintainer : stegu\n// Lastmod : 20110822 (ijm)\n// License : Copyright (C) 2011 Ashima Arts. All rights reserved.\n// Distributed under the MIT License. See LICENSE file.\n// https://github.com/ashima/webgl-noise\n// https://github.com/stegu/webgl-noise\n// \n\n\n\nfloat snoise(vec3 v)\n { \n const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;\n const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);\n\n// First corner\n vec3 i = floor(v + dot(v, C.yyy) );\n vec3 x0 = v - i + dot(i, C.xxx) ;\n\n// Other corners\n vec3 g = step(x0.yzx, x0.xyz);\n vec3 l = 1.0 - g;\n vec3 i1 = min( g.xyz, l.zxy );\n vec3 i2 = max( g.xyz, l.zxy );\n\n // x0 = x0 - 0.0 + 0.0 * C.xxx;\n // x1 = x0 - i1 + 1.0 * C.xxx;\n // x2 = x0 - i2 + 2.0 * C.xxx;\n // x3 = x0 - 1.0 + 3.0 * C.xxx;\n vec3 x1 = x0 - i1 + C.xxx;\n vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y\n vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y\n\n// Permutations\n i = mod289(i); \n vec4 p = permute( permute( permute( \n i.z + vec4(0.0, i1.z, i2.z, 1.0 ))\n + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) \n + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));\n\n// Gradients: 7x7 points over a square, mapped onto an octahedron.\n// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)\n float n_ = 0.142857142857; // 1.0/7.0\n vec3 ns = n_ * D.wyz - D.xzx;\n\n vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)\n\n vec4 x_ = floor(j * ns.z);\n vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)\n\n vec4 x = x_ *ns.x + ns.yyyy;\n vec4 y = y_ *ns.x + ns.yyyy;\n vec4 h = 1.0 - abs(x) - abs(y);\n\n vec4 b0 = vec4( x.xy, y.xy );\n vec4 b1 = vec4( x.zw, y.zw );\n\n //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;\n //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;\n vec4 s0 = floor(b0)*2.0 + 1.0;\n vec4 s1 = floor(b1)*2.0 + 1.0;\n vec4 sh = -step(h, vec4(0.0));\n\n vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;\n vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;\n\n vec3 p0 = vec3(a0.xy,h.x);\n vec3 p1 = vec3(a0.zw,h.y);\n vec3 p2 = vec3(a1.xy,h.z);\n vec3 p3 = vec3(a1.zw,h.w);\n\n//Normalise gradients\n vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n p0 *= norm.x;\n p1 *= norm.y;\n p2 *= norm.z;\n p3 *= norm.w;\n\n// Mix final noise value\n vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n m = m * m;\n return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), \n dot(p2,x2), dot(p3,x3) ) );\n }\n\n\nfloat fbm_snoise_geo1_particlesSystemGpu1_noise1(in vec3 st) {\n\tfloat value = 0.0;\n\tfloat amplitude = 1.0;\n\tfor (int i = 0; i < 7; i++) {\n\t\tvalue += amplitude * snoise(st);\n\t\tst *= 2.0;\n\t\tamplitude *= 0.5;\n\t}\n\treturn value;\n}\n\n\n\n\n\n\n\n\n// /geo1/particlesSystemGpu1/attribute3\nuniform sampler2D texture_restP;\n\n// /geo1/particlesSystemGpu1/attribute_POWER_in\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/particlesSystemGpu1/globals1\nuniform float time;\n\n// /geo1/particlesSystemGpu1/param1\nuniform vec2 v_POLY_param_cursor;\n\n// /geo1/particlesSystemGpu1/attribute_LIGHT_in\nuniform sampler2D texture_light;\n\n\n\n\n\nvoid main() {\n\n\tvec2 particleUv = (gl_FragCoord.xy / resolution.xy);\n\n// removed:\n//\t// INSERT BODY\n\n\n\n\t// /geo1/particlesSystemGpu1/attribute3\n\tvec3 v_POLY_attribute3_val = texture2D( texture_restP, particleUv ).xyz;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_POWER_in\n\tfloat v_POLY_attribute_POWER_in_val = texture2D( texture_instancePosition_x_power, particleUv ).w;\n\tgl_FragColor.w = v_POLY_attribute_POWER_in_val;\n\t\n\t// /geo1/particlesSystemGpu1/attribute1\n\tvec3 v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particleUv ).xyz;\n\tgl_FragColor.xyz = v_POLY_attribute1_val;\n\t\n\t// /geo1/particlesSystemGpu1/globals1\n\tfloat v_POLY_globals1_time = time;\n\t\n\t// /geo1/particlesSystemGpu1/constant1\n\tfloat v_POLY_constant1_val = 0.003;\n\t\n\t// /geo1/particlesSystemGpu1/param1\n\tvec2 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_LIGHT_in\n\tfloat v_POLY_attribute_LIGHT_in_val = texture2D( texture_light, particleUv ).x;\n\t\n\t// /geo1/particlesSystemGpu1/constant2\n\tfloat v_POLY_constant2_val = 0.006;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd4\n\tfloat v_POLY_multAdd4_val = (0.15*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd6\n\tfloat v_POLY_multAdd6_val = (0.5*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd3\n\tfloat v_POLY_multAdd3_val = (0.09*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd5\n\tfloat v_POLY_multAdd5_val = (0.01*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/subtract1\n\tfloat v_POLY_subtract1_subtract = (v_POLY_attribute_POWER_in_val - v_POLY_constant1_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_attribute1_val.x;\n\tfloat v_POLY_vec3ToFloat1_y = v_POLY_attribute1_val.y;\n\t\n\t// /geo1/particlesSystemGpu1/subtract2\n\tfloat v_POLY_subtract2_subtract = (v_POLY_attribute_LIGHT_in_val - v_POLY_constant2_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_3\n\tvec3 v_POLY_floatToVec3_3_vec3 = vec3(0.0, 0.0, v_POLY_multAdd4_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_multAdd6_val, v_POLY_multAdd6_val, v_POLY_multAdd6_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_2\n\tvec3 v_POLY_floatToVec3_2_vec3 = vec3(0.0, v_POLY_multAdd3_val, v_POLY_multAdd5_val);\n\t\n\t// /geo1/particlesSystemGpu1/clamp1\n\tfloat v_POLY_clamp1_val = clamp(v_POLY_subtract1_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_y);\n\t\n\t// /geo1/particlesSystemGpu1/clamp3\n\tfloat v_POLY_clamp3_val = clamp(v_POLY_subtract2_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd2\n\tvec3 v_POLY_multAdd2_val = (vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004)*(v_POLY_floatToVec3_1_vec3 + vec3(0.0, 0.0, 0.0))) + vec3(0.0, 0.0, 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/distance1\n\tfloat v_POLY_distance1_val = distance(v_POLY_floatToVec2_1_vec2, v_POLY_param1_val);\n\t\n\t// /geo1/particlesSystemGpu1/noise1\n\tfloat v_POLY_noise1_noisex = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(0.0, 0.0, 0.0)))).x;\n\tfloat v_POLY_noise1_noisey = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(1000.0, 1000.0, 1000.0)))).y;\n\tfloat v_POLY_noise1_noisez = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(2000.0, 2000.0, 2000.0)))).z;\n\tvec3 v_POLY_noise1_noise = vec3(v_POLY_noise1_noisex, v_POLY_noise1_noisey, v_POLY_noise1_noisez);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep1\n\tfloat v_POLY_smoothstep1_val = smoothstep(0.35, 0.03, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep2\n\tfloat v_POLY_smoothstep2_val = smoothstep(0.35, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep3\n\tfloat v_POLY_smoothstep3_val = smoothstep(0.21, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/add1\n\tvec3 v_POLY_add1_sum = (v_POLY_attribute3_val + v_POLY_floatToVec3_3_vec3 + v_POLY_noise1_noise + vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/particlesSystemGpu1/multAdd1\n\tfloat v_POLY_multAdd1_val = (0.15*(v_POLY_smoothstep1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/min1\n\tfloat v_POLY_min1_val = min(v_POLY_smoothstep2_val, v_POLY_smoothstep3_val);\n\t\n\t// /geo1/particlesSystemGpu1/attribute2\n\tgl_FragColor.xyz = v_POLY_add1_sum;\n\t\n\t// /geo1/particlesSystemGpu1/add2\n\tfloat v_POLY_add2_sum = (v_POLY_clamp1_val + v_POLY_multAdd1_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd7\n\tfloat v_POLY_multAdd7_val = (0.15*(v_POLY_min1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/clamp2\n\tfloat v_POLY_clamp2_val = clamp(v_POLY_add2_sum, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/add3\n\tfloat v_POLY_add3_sum = (v_POLY_clamp3_val + v_POLY_multAdd7_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/attribute_POWER_out\n\tgl_FragColor.w = v_POLY_clamp2_val;\n\t\n\t// /geo1/particlesSystemGpu1/clamp4\n\tfloat v_POLY_clamp4_val = clamp(v_POLY_add3_sum, 0.0, 1.0);\n\n\n\n\n}","light":"#include <common>\n\n// removed:\n//// INSERT DEFINE\n\n\n\n// /geo1/particlesSystemGpu1/noise1\n// Modulo 289 without a division (only multiplications)\nfloat mod289(float x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec2 mod289(vec2 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec3 mod289(vec3 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec4 mod289(vec4 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\n// Modulo 7 without a division\nvec3 mod7(vec3 x) {\n return x - floor(x * (1.0 / 7.0)) * 7.0;\n}\n\n// Permutation polynomial: (34x^2 + x) mod 289\nfloat permute(float x) {\n return mod289(((x*34.0)+1.0)*x);\n}\nvec3 permute(vec3 x) {\n return mod289((34.0 * x + 1.0) * x);\n}\nvec4 permute(vec4 x) {\n return mod289(((x*34.0)+1.0)*x);\n}\n\nfloat taylorInvSqrt(float r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\nvec4 taylorInvSqrt(vec4 r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\n\nvec2 fade(vec2 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec3 fade(vec3 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec4 fade(vec4 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\n//\n// Description : Array and textureless GLSL 2D/3D/4D simplex \n// noise functions.\n// Author : Ian McEwan, Ashima Arts.\n// Maintainer : stegu\n// Lastmod : 20110822 (ijm)\n// License : Copyright (C) 2011 Ashima Arts. All rights reserved.\n// Distributed under the MIT License. See LICENSE file.\n// https://github.com/ashima/webgl-noise\n// https://github.com/stegu/webgl-noise\n// \n\n\n\nfloat snoise(vec3 v)\n { \n const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;\n const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);\n\n// First corner\n vec3 i = floor(v + dot(v, C.yyy) );\n vec3 x0 = v - i + dot(i, C.xxx) ;\n\n// Other corners\n vec3 g = step(x0.yzx, x0.xyz);\n vec3 l = 1.0 - g;\n vec3 i1 = min( g.xyz, l.zxy );\n vec3 i2 = max( g.xyz, l.zxy );\n\n // x0 = x0 - 0.0 + 0.0 * C.xxx;\n // x1 = x0 - i1 + 1.0 * C.xxx;\n // x2 = x0 - i2 + 2.0 * C.xxx;\n // x3 = x0 - 1.0 + 3.0 * C.xxx;\n vec3 x1 = x0 - i1 + C.xxx;\n vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y\n vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y\n\n// Permutations\n i = mod289(i); \n vec4 p = permute( permute( permute( \n i.z + vec4(0.0, i1.z, i2.z, 1.0 ))\n + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) \n + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));\n\n// Gradients: 7x7 points over a square, mapped onto an octahedron.\n// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)\n float n_ = 0.142857142857; // 1.0/7.0\n vec3 ns = n_ * D.wyz - D.xzx;\n\n vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)\n\n vec4 x_ = floor(j * ns.z);\n vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)\n\n vec4 x = x_ *ns.x + ns.yyyy;\n vec4 y = y_ *ns.x + ns.yyyy;\n vec4 h = 1.0 - abs(x) - abs(y);\n\n vec4 b0 = vec4( x.xy, y.xy );\n vec4 b1 = vec4( x.zw, y.zw );\n\n //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;\n //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;\n vec4 s0 = floor(b0)*2.0 + 1.0;\n vec4 s1 = floor(b1)*2.0 + 1.0;\n vec4 sh = -step(h, vec4(0.0));\n\n vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;\n vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;\n\n vec3 p0 = vec3(a0.xy,h.x);\n vec3 p1 = vec3(a0.zw,h.y);\n vec3 p2 = vec3(a1.xy,h.z);\n vec3 p3 = vec3(a1.zw,h.w);\n\n//Normalise gradients\n vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n p0 *= norm.x;\n p1 *= norm.y;\n p2 *= norm.z;\n p3 *= norm.w;\n\n// Mix final noise value\n vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n m = m * m;\n return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), \n dot(p2,x2), dot(p3,x3) ) );\n }\n\n\nfloat fbm_snoise_geo1_particlesSystemGpu1_noise1(in vec3 st) {\n\tfloat value = 0.0;\n\tfloat amplitude = 1.0;\n\tfor (int i = 0; i < 7; i++) {\n\t\tvalue += amplitude * snoise(st);\n\t\tst *= 2.0;\n\t\tamplitude *= 0.5;\n\t}\n\treturn value;\n}\n\n\n\n\n\n\n\n\n// /geo1/particlesSystemGpu1/attribute3\nuniform sampler2D texture_restP;\n\n// /geo1/particlesSystemGpu1/attribute_POWER_in\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/particlesSystemGpu1/globals1\nuniform float time;\n\n// /geo1/particlesSystemGpu1/param1\nuniform vec2 v_POLY_param_cursor;\n\n// /geo1/particlesSystemGpu1/attribute_LIGHT_in\nuniform sampler2D texture_light;\n\n\n\n\n\nvoid main() {\n\n\tvec2 particleUv = (gl_FragCoord.xy / resolution.xy);\n\n// removed:\n//\t// INSERT BODY\n\n\n\n\t// /geo1/particlesSystemGpu1/attribute3\n\tvec3 v_POLY_attribute3_val = texture2D( texture_restP, particleUv ).xyz;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_POWER_in\n\tfloat v_POLY_attribute_POWER_in_val = texture2D( texture_instancePosition_x_power, particleUv ).w;\n\t\n\t// /geo1/particlesSystemGpu1/attribute1\n\tvec3 v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particleUv ).xyz;\n\t\n\t// /geo1/particlesSystemGpu1/globals1\n\tfloat v_POLY_globals1_time = time;\n\t\n\t// /geo1/particlesSystemGpu1/constant1\n\tfloat v_POLY_constant1_val = 0.003;\n\t\n\t// /geo1/particlesSystemGpu1/param1\n\tvec2 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_LIGHT_in\n\tfloat v_POLY_attribute_LIGHT_in_val = texture2D( texture_light, particleUv ).x;\n\tgl_FragColor.x = v_POLY_attribute_LIGHT_in_val;\n\t\n\t// /geo1/particlesSystemGpu1/constant2\n\tfloat v_POLY_constant2_val = 0.006;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd4\n\tfloat v_POLY_multAdd4_val = (0.15*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd6\n\tfloat v_POLY_multAdd6_val = (0.5*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd3\n\tfloat v_POLY_multAdd3_val = (0.09*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd5\n\tfloat v_POLY_multAdd5_val = (0.01*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/subtract1\n\tfloat v_POLY_subtract1_subtract = (v_POLY_attribute_POWER_in_val - v_POLY_constant1_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_attribute1_val.x;\n\tfloat v_POLY_vec3ToFloat1_y = v_POLY_attribute1_val.y;\n\t\n\t// /geo1/particlesSystemGpu1/subtract2\n\tfloat v_POLY_subtract2_subtract = (v_POLY_attribute_LIGHT_in_val - v_POLY_constant2_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_3\n\tvec3 v_POLY_floatToVec3_3_vec3 = vec3(0.0, 0.0, v_POLY_multAdd4_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_multAdd6_val, v_POLY_multAdd6_val, v_POLY_multAdd6_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_2\n\tvec3 v_POLY_floatToVec3_2_vec3 = vec3(0.0, v_POLY_multAdd3_val, v_POLY_multAdd5_val);\n\t\n\t// /geo1/particlesSystemGpu1/clamp1\n\tfloat v_POLY_clamp1_val = clamp(v_POLY_subtract1_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_y);\n\t\n\t// /geo1/particlesSystemGpu1/clamp3\n\tfloat v_POLY_clamp3_val = clamp(v_POLY_subtract2_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd2\n\tvec3 v_POLY_multAdd2_val = (vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004)*(v_POLY_floatToVec3_1_vec3 + vec3(0.0, 0.0, 0.0))) + vec3(0.0, 0.0, 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/distance1\n\tfloat v_POLY_distance1_val = distance(v_POLY_floatToVec2_1_vec2, v_POLY_param1_val);\n\t\n\t// /geo1/particlesSystemGpu1/noise1\n\tfloat v_POLY_noise1_noisex = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(0.0, 0.0, 0.0)))).x;\n\tfloat v_POLY_noise1_noisey = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(1000.0, 1000.0, 1000.0)))).y;\n\tfloat v_POLY_noise1_noisez = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(2000.0, 2000.0, 2000.0)))).z;\n\tvec3 v_POLY_noise1_noise = vec3(v_POLY_noise1_noisex, v_POLY_noise1_noisey, v_POLY_noise1_noisez);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep1\n\tfloat v_POLY_smoothstep1_val = smoothstep(0.35, 0.03, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep2\n\tfloat v_POLY_smoothstep2_val = smoothstep(0.35, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep3\n\tfloat v_POLY_smoothstep3_val = smoothstep(0.21, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/add1\n\tvec3 v_POLY_add1_sum = (v_POLY_attribute3_val + v_POLY_floatToVec3_3_vec3 + v_POLY_noise1_noise + vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/particlesSystemGpu1/multAdd1\n\tfloat v_POLY_multAdd1_val = (0.15*(v_POLY_smoothstep1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/min1\n\tfloat v_POLY_min1_val = min(v_POLY_smoothstep2_val, v_POLY_smoothstep3_val);\n\t\n\t// /geo1/particlesSystemGpu1/add2\n\tfloat v_POLY_add2_sum = (v_POLY_clamp1_val + v_POLY_multAdd1_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd7\n\tfloat v_POLY_multAdd7_val = (0.15*(v_POLY_min1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/clamp2\n\tfloat v_POLY_clamp2_val = clamp(v_POLY_add2_sum, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/add3\n\tfloat v_POLY_add3_sum = (v_POLY_clamp3_val + v_POLY_multAdd7_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/clamp4\n\tfloat v_POLY_clamp4_val = clamp(v_POLY_add3_sum, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/attribute_LIGHT_out\n\tgl_FragColor.x = v_POLY_clamp4_val;\n\n\n\n\n}"}},"jsFunctionBodies":{"/geo1/actor_particles1":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /geo1/actor_particles1/rayFromCursor1\n\tv_POLY_rayFromCursor1_Ray = computed(() => globalsRayFromCursor());\n\n\t// /geo1/actor_particles1/plane1\n\tv_POLY_plane1_Plane = computed(() => planeSet(VAR__plane1_normal.set(0, 0, 1), 0.0, VAR__plane1__1));\n\n\t// /geo1/actor_particles1/rayIntersectPlane1\n\tv_POLY_rayIntersectPlane1_position = computed(() =>\n\t\trayIntersectPlane(this.v_POLY_rayFromCursor1_Ray.value, this.v_POLY_plane1_Plane.value, VAR__rayIntersectPlane1_)\n\t);\n\n\t// /geo1/actor_particles1/vec3ToFloat1\n\tv_POLY_vec3ToFloat1_x = computed(() => VAR__vec3ToFloat1_vec3.copy(this.v_POLY_rayIntersectPlane1_position.value).x);\n\tv_POLY_vec3ToFloat1_y = computed(() => VAR__vec3ToFloat1_vec3.copy(this.v_POLY_rayIntersectPlane1_position.value).y);\n\n\t// /geo1/actor_particles1/floatToVec2_1\n\tv_POLY_floatToVec2_1_vec2 = computed(() =>\n\t\tfloatToVec2(this.v_POLY_vec3ToFloat1_x.value, this.v_POLY_vec3ToFloat1_y.value, VAR__floatToVec2_1_)\n\t);\n\n\t// /geo1/actor_particles1/setParam1\n\tv_POLY_setParam1_getParamSinceNoInput = computed(() => getParam(\"/geo1/particlesSystemGpu1/cursor\"));\n\n\t// /geo1/actor_particles1/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\tconstructor(node, object3D) {\n\t\tsuper(node, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonScenePause() {\n\t\tthis.onScenePause1();\n\t}\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /geo1/actor_particles1/onScenePause1\n\tonScenePause1() {\n\t\tthis.particlesSystemReset1(0);\n\t}\n\n\t// /geo1/actor_particles1/onTick1\n\tonTick1() {\n\t\tthis.setParam1(0);\n\t}\n\n\t// /geo1/actor_particles1/particlesSystemReset1\n\tparticlesSystemReset1() {\n\t\tparticlesSystemReset(this.object3D);\n\t}\n\n\t// /geo1/actor_particles1/setParam1\n\tsetParam1() {\n\t\tsetParamVector2(\n\t\t\tthis.v_POLY_setParam1_getParamSinceNoInput.value,\n\t\t\tVAR__setParam1_val.copy(this.v_POLY_floatToVec2_1_vec2.value),\n\t\t\t1.0\n\t\t);\n\t\tthis.particlesSystemStepSimulation1(0);\n\t}\n\n\t// /geo1/actor_particles1/particlesSystemStepSimulation1\n\tparticlesSystemStepSimulation1() {\n\t\tparticlesSystemStepSimulation(this.object3D, { texture_: this.v_POLY_particlesSystemStepSimulation1_ });\n\t}\n}\nreturn CustomActorEvaluator;\n","/geo1/pointBuilder1":"// insert defines\n// insert members\n// insert after constructor\nconst CustomPointBuilderEvaluator = function () {\n\t// insert body\n\n\t// /geo1/pointBuilder1/globals1\n\tv_POLY_globals1_position.copy(pointContainer.position);\n\n\t// /geo1/pointBuilder1/attribute1\n\tv_POLY_attribute1_val = attributesDict.get(\"idn\");\n\n\t// /geo1/pointBuilder1/rand1\n\tconst v_POLY_rand1_rand = mathFloat_2(rand, v_POLY_attribute1_val, 0.0);\n\n\t// /geo1/pointBuilder1/multAdd1\n\tconst v_POLY_multAdd1_val = mathFloat_4(multAdd, v_POLY_rand1_rand, 0.0, -0.5, 0.0);\n\n\t// /geo1/pointBuilder1/floatToVec3_1\n\tconst v_POLY_floatToVec3_1_vec3 = floatToVec3(0.0, 0.0, v_POLY_multAdd1_val, VAR__floatToVec3_1_);\n\n\t// /geo1/pointBuilder1/add1\n\tconst v_POLY_add1_sum = addVector(\n\t\tVAR__add1_add0.copy(v_POLY_globals1_position),\n\t\tVAR__add1_add1.copy(v_POLY_floatToVec3_1_vec3),\n\t\tVAR__add1_add2.set(0, 0, 0)\n\t);\n\n\t// /geo1/pointBuilder1/output1\n\tpointContainer.position.copy(v_POLY_add1_sum);\n};\nreturn CustomPointBuilderEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.5013333333333333,"split_panel0":{"split_ratio":0.588774341351661,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera_MAIN","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false,"initLayoutData":{"camera":{"position":{"x":100,"y":-200},"zoom":1},"history":{"2":{"position":{"x":0,"y":0},"zoom":1},"36":{"position":{"x":100,"y":-200},"zoom":1},"104":{"position":{"x":100,"y":-200},"zoom":1},"107":{"position":{"x":-400,"y":-100},"zoom":1},"175":{"position":{"x":0,"y":-50},"zoom":1},"243":{"position":{"x":100,"y":-200},"zoom":1},"432":{"position":{"x":0,"y":-175},"zoom":1},"444":{"position":{"x":-300,"y":-200},"zoom":1},"464":{"position":{"x":0,"y":-200},"zoom":1},"509":{"position":{"x":-350,"y":-350},"zoom":1},"638":{"position":{"x":300,"y":25},"zoom":1},"1147":{"position":{"x":0,"y":0},"zoom":1},"1251":{"position":{"x":50,"y":-50},"zoom":1},"1327":{"position":{"x":0,"y":0},"zoom":1},"1405":{"position":{"x":0,"y":0},"zoom":1},"1649":{"position":{"x":0,"y":0},"zoom":1},"1814":{"position":{"x":0,"y":0},"zoom":1},"1962":{"position":{"x":0,"y":0},"zoom":1},"2040":{"position":{"x":0,"y":-200},"zoom":1},"2356":{"position":{"x":0,"y":0},"zoom":1},"2698":{"position":{"x":0,"y":0},"zoom":1},"2987":{"position":{"x":200,"y":0},"zoom":1},"3172":{"position":{"x":-450,"y":550},"zoom":1},"3585":{"position":{"x":0,"y":0},"zoom":1}},"paramsDisplayed":false,"linkIndex":1}}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":null,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"panelTypes":["network","params","viewer"],"currentPanelIndex":0,"panel_data":{"camera":{"position":{"x":140.99442105842655,"y":-1143.22451080513},"zoom":0.5862221069335929},"history":{"2":{"position":{"x":-50.93274174158252,"y":307.2887736596621},"zoom":1.0222221069335933},"36":{"position":{"x":140.99442105842655,"y":-1143.22451080513},"zoom":0.5862221069335929},"104":{"position":{"x":-68.26088854207657,"y":-244.02174409531074},"zoom":1.0222221069335933},"107":{"position":{"x":-235.7533067556872,"y":-179.4659149834593},"zoom":0.8002221069335932},"175":{"position":{"x":-173.00588495404205,"y":-173.01990383602603},"zoom":0.9472221069335934},"243":{"position":{"x":-149.34062620946926,"y":-949.8303685639672},"zoom":0.714722118462456},"432":{"position":{"x":0,"y":-175},"zoom":0.615222106933593},"444":{"position":{"x":-413.7800466060882,"y":-183.74570762770168},"zoom":0.615222106933593},"464":{"position":{"x":-42.06522213551914,"y":-198.0434780402084},"zoom":1.0222221069335933},"509":{"position":{"x":-729.379697206445,"y":344.4321640909933},"zoom":0.5772221069335929},"638":{"position":{"x":308.12714618614916,"y":-2.632297032907136},"zoom":0.615222106933593},"1147":{"position":{"x":-221.08698145644942,"y":-163.3695836425976},"zoom":1.0222221069335933},"1251":{"position":{"x":-267.71479205932536,"y":82.79089571164411},"zoom":0.6032221069335932},"1327":{"position":{"x":-41.08696115562335,"y":8.804348819062145},"zoom":1.0222221069335933},"1405":{"position":{"x":-576.3909504853902,"y":-236.10718574872618},"zoom":0.7792221069335932},"1649":{"position":{"x":0,"y":0},"zoom":1.0222221069335933},"1814":{"position":{"x":298.05367398584673,"y":11.745822248928919},"zoom":0.8212221069335931},"1962":{"position":{"x":-263.3873316675067,"y":-63.88543789382079},"zoom":0.8922221069335933},"2040":{"position":{"x":-359.7263389932991,"y":-332.94234267143656},"zoom":0.7672499066162105},"2356":{"position":{"x":0,"y":0},"zoom":1.0222221069335933},"2698":{"position":{"x":-62.561102433617236,"y":-18.246988209805025},"zoom":0.7672499066162105},"2987":{"position":{"x":141.70228609683141,"y":-147.25541763050543},"zoom":0.7462221069335931},"3172":{"position":{"x":-402.7355030626578,"y":-973.5595124745149},"zoom":0.5986912299262144},"3585":{"position":{"x":-223.03863405035676,"y":-63.88543789382079},"zoom":0.8922221069335933}},"paramsDisplayed":false,"linkIndex":1}},"split_mode":"horizontal"},"currentNodes":["/geo1","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/env/MAT","/env","/env/MAT","/env","/","/lights","/lights/MAT","/lights","/lights/MAT","/lights","/lights/MAT","/lights","/lights/MAT","/lights","/","/cameras","/","/geo1","/geo1/particlesSystemGpu1","/geo1"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":19,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"createExport":false,"checkRemoteAssetsUse":true,"minimizeFilesCount":false,"compressJs":true,"createZip":false,"runPostExportCommand":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/meshStandard;mat/meshStandardBuilder;obj/copNetwork;obj/geo;sop/actor;sop/areaLight;sop/attribCreate;sop/attribDelete;sop/boolean;sop/box;sop/cameraControls;sop/copNetwork;sop/copy;sop/fileOBJ;sop/hemisphereLight;sop/instance;sop/material;sop/materialsNetwork;sop/merge;sop/particlesSystemGpu;sop/perspectiveCamera;sop/plane;sop/pointBuilder;sop/polarTransform;sop/restAttributes;sop/scatter;sop/sphere;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_STANDARD;GL_PARTICLES;JS_ACTOR;JS_POINT_BUILDER
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/plane1":"sop/plane","/geo1/transform1":"sop/transform","/geo1/transform2":"sop/transform","/geo1/sphere1":"sop/sphere","/geo1/instance1":"sop/instance","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshStandardBuilder_PARTICLES":"mat/meshStandardBuilder","/geo1/MAT/meshStandardBuilder_INSTANCES":"mat/meshStandardBuilder","/geo1/actor_particles1":"sop/actor","/geo1/restAttributes1":"sop/restAttributes","/geo1/attribCreate1":"sop/attribCreate","/geo1/scatter2":"sop/scatter","/geo1/pointBuilder1":"sop/pointBuilder","/geo1/attribCreate2":"sop/attribCreate","/geo1/particlesSystemGpu1":"sop/particlesSystemGpu","/geo1/attribDelete1":"sop/attribDelete","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/merge1":"sop/merge","/lights/areaLight1":"sop/areaLight","/lights/polarTransform1":"sop/polarTransform","/lights/areaLight2":"sop/areaLight","/lights/polarTransform2":"sop/polarTransform","/lights/box1":"sop/box","/lights/copy1":"sop/copy","/lights/merge2":"sop/merge","/lights/merge3":"sop/merge","/lights/material1":"sop/material","/lights/MAT":"sop/materialsNetwork","/lights/MAT/meshStandard1":"mat/meshStandard","/lights/transform1":"sop/transform","/cameras":"obj/geo","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls","/cameras/perspectiveCamera_DEBUG":"sop/perspectiveCamera","/cameras/cameraControls2":"sop/cameraControls","/cameras/cameraControls2/cameraOrbitControls1":"event/cameraOrbitControls","/cameras/perspectiveCamera_MAIN":"sop/perspectiveCamera","/cameras/merge1":"sop/merge","/env":"obj/geo","/env/MAT":"sop/materialsNetwork","/env/MAT/meshStandard_WALLS":"mat/meshStandard","/env/MAT/meshStandard_PEOPLE":"mat/meshStandard","/env/box1":"sop/box","/env/box2":"sop/box","/env/transform1":"sop/transform","/env/transform2":"sop/transform","/env/boolean1":"sop/boolean","/env/merge1":"sop/merge","/env/material1":"sop/material","/env/box3":"sop/box","/env/transform3":"sop/transform","/env/COP":"sop/copNetwork","/env/COP/image1":"cop/image","/env/fileOBJ1":"sop/fileOBJ","/env/transform4":"sop/transform","/env/fileOBJ3":"sop/fileOBJ","/env/transform6":"sop/transform","/env/merge2":"sop/merge","/env/material2":"sop/material","/env/merge3":"sop/merge"}
Js version
Editor version
Engine version
Name
*
Code
{"properties":{"frame":0,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_MAIN","versions":{"polygonjs":"1.5.9"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"plane1":{"type":"plane","params":{"direction":[0,0,1],"center":[0,0.5,0]}},"transform1":{"type":"transform","params":{"t":[0,0.25,0]},"inputs":["transform2"]},"transform2":{"type":"transform","params":{"s":[4,2,1]},"inputs":["plane1"]},"sphere1":{"type":"sphere","params":{"radius":0.02,"resolution":[7,7],"phiLength":"$PI"}},"instance1":{"type":"instance","params":{"attributesToCopy":"instance* restP power light","material":"../MAT/meshStandardBuilder_INSTANCES"},"inputs":["sphere1","attribCreate2"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandardBuilder_PARTICLES":{"type":"meshStandardBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"},{"index":2,"inputName":"color","node":"mix1","output":"mix"}]},"instanceTransform1":{"type":"instanceTransform"},"attribute1":{"type":"attribute","params":{"name":"power"},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"constant1":{"type":"constant","params":{"type":4,"color":[0.0015176349176470587,0,0.02217388478862708],"asColor":1},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"constant2":{"type":"constant","params":{"type":4,"color":[0.12213877222015301,0.4452011945063733,0.5647115056965487],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value0","node":"mix2","output":"mix"},{"index":1,"inputName":"value1","node":"multScalar2","output":"val"},{"index":2,"inputName":"blend","node":"attribute1","output":"val"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"attribute2":{"type":"attribute","params":{"name":"light"},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"constant3":{"type":"constant","params":{"type":4,"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"constant4":{"type":"constant","params":{"type":4,"color":[0.12213877222015301,0.4452011945063733,0.5647115056965487],"asColor":true},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"mix2":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value0","node":"constant2","output":"val"},{"index":1,"inputName":"value1","node":"multScalar1","output":"val"},{"index":2,"inputName":"blend","node":"attribute2","output":"val"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"multScalar1":{"type":"multScalar","params":{"value":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":1.8}},"inputs":[{"index":0,"inputName":"value","node":"constant2","output":"val"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"mult","type":"float"}],"out":[{"name":"val","type":"vec3"}]}},"multScalar2":{"type":"multScalar","params":{"value":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.33}},"inputs":[{"index":0,"inputName":"value","node":"constant2","output":"val"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"mult","type":"float"}],"out":[{"name":"val","type":"vec3"}]}}},"params":{"emissive":[1,1,1],"emissiveIntensity":0,"useEnvMap":1,"envMap":"../../../COP/envMap"},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-main","type":"MeshStandardMaterial","color":16777215,"roughness":1,"metalness":0,"emissive":16777215,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_PARTICLES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}},"meshStandardBuilder_INSTANCES":{"type":"meshStandardBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"instanceTransform1":{"type":"instanceTransform"}},"params":{"useEnvMap":true,"envMap":"../../../COP/envMap","metalness":1,"roughness":0},"persisted_config":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-main","type":"MeshStandardMaterial","color":16777215,"roughness":0,"metalness":1,"emissive":0,"envMapIntensity":1,"depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshStandardBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"actor_particles1":{"type":"actor","nodes":{"particlesSystemReset1":{"type":"particlesSystemReset","inputs":[{"index":0,"inputName":"trigger","node":"onScenePause1","output":"trigger"}]},"onScenePause1":{"type":"onScenePause"},"particlesSystemStepSimulation1":{"type":"particlesSystemStepSimulation","maxInputsCount":2,"inputs":[{"index":0,"inputName":"trigger","node":"setParam1","output":"trigger"}],"connection_points":{"in":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Object3D","type":"Object3D","isArray":false}],"out":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Object3D","type":"Object3D","isArray":false},{"name":"","type":"Texture","isArray":false}]}},"onTick1":{"type":"onTick"},"rayFromCursor1":{"type":"rayFromCursor"},"rayIntersectPlane1":{"type":"rayIntersectPlane","inputs":[{"index":0,"inputName":"Ray","node":"rayFromCursor1","output":"Ray"},{"index":1,"inputName":"Plane","node":"plane1","output":"Plane"}]},"plane1":{"type":"plane","params":{"normal":[0,0,1]}},"setParam1":{"type":"setParam","params":{"type":5,"Param":{"type":"param_path","default_value":"","options":{"spare":true,"editable":true,"computeOnDirty":false,"dependentOnFoundParam":false},"raw_input":"../../particlesSystemGpu1/cursor"},"lerp":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"val":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":4,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,null,{"index":3,"inputName":"val","node":"floatToVec2_1","output":"vec2"}],"connection_points":{"in":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Param","type":"Param","isArray":false},{"name":"lerp","type":"float","isArray":false},{"name":"val","type":"Vector2","isArray":false}],"out":[{"name":"trigger","type":"trigger","isArray":false}]}},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec3":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec3","node":"rayIntersectPlane1","output":"position"}]},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec3ToFloat1","output":"y"}]}},"inputs":["instance1"],"persisted_config":{"variableNames":["VAR__plane1_normal","VAR__plane1__1","VAR__rayIntersectPlane1_","VAR__vec3ToFloat1_vec3","VAR__floatToVec2_1_","VAR__setParam1_val"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Plane","data":{"normal":[1,0,0],"constant":0}},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector2","data":[0,0]},{"type":"Vector2","data":[0,0]}],"functionNames":["globalsRayFromCursor","planeSet","rayIntersectPlane","floatToVec2","globalsTime","globalsTimeDelta","particlesSystemReset","getParam","setParamVector2","particlesSystemStepSimulation"],"serializedParamConfigs":[],"eventDatas":[{"type":"pointermove","emitter":"canvas","jsType":"rayFromCursor"},{"type":"touchmove","emitter":"canvas","jsType":"rayFromCursor"}]}},"restAttributes1":{"type":"restAttributes","params":{"tnormal":0},"inputs":["pointBuilder1"]},"attribCreate1":{"type":"attribCreate","params":{"name":"power"},"inputs":["restAttributes1"]},"scatter2":{"type":"scatter","params":{"pointsCount":40000},"inputs":["transform1"]},"pointBuilder1":{"type":"pointBuilder","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"add1","output":"sum"}]},"add1":{"type":"add","params":{"add0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"globals1","output":"position"},{"index":1,"inputName":"add1","node":"floatToVec3_1","output":"vec3"}],"connection_points":{"in":[{"name":"add0","type":"Vector3","isArray":false},{"name":"add1","type":"Vector3","isArray":false},{"name":"add2","type":"Vector3","isArray":false}],"out":[{"name":"sum","type":"Vector3","isArray":false}]}},"attribute1":{"type":"attribute","params":{"name":"idn","type":1},"connection_points":{"in":[],"out":[{"name":"val","type":"float","isArray":false}]}},"rand1":{"type":"rand","params":{"value0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value0","node":"attribute1","output":"val"}],"connection_points":{"in":[{"name":"value0","type":"float","isArray":false},{"name":"value1","type":"float","isArray":false}],"out":[{"name":"rand","type":"float","isArray":false}]}},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,null,{"index":2,"inputName":"z","node":"multAdd1","output":"val"}]},"multAdd1":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":-0.5},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"rand1","output":"rand"}],"connection_points":{"in":[{"name":"value","type":"float","isArray":false},{"name":"preAdd","type":"float","isArray":false},{"name":"mult","type":"float","isArray":false},{"name":"postAdd","type":"float","isArray":false}],"out":[{"name":"val","type":"float","isArray":false}]}}},"inputs":["attribDelete1"],"persisted_config":{"variableNames":["v_POLY_globals1_position","VAR__floatToVec3_1_","VAR__add1_add0","VAR__add1_add1","VAR__add1_add2"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["rand","mathFloat_2","multAdd","mathFloat_4","floatToVec3","addVector"],"serializedParamConfigs":[],"attributesData":{"read":[{"attribName":"idn","attribType":"float"}],"write":[]}}},"attribCreate2":{"type":"attribCreate","params":{"name":"light"},"inputs":["attribCreate1"]},"particlesSystemGpu1":{"type":"particlesSystemGpu","nodes":{"globals1":{"type":"globals"},"output1":{"type":"output"},"noise1":{"type":"noise","params":{"octaves":7,"amp":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":[0.1,0.1,0.1]},"position":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"freq":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":[0.30000000000000004,0.30000000000000004,0.30000000000000004]},"offset":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":4,"inputs":[{"index":0,"inputName":"amp","node":"multAdd2","output":"val"},{"index":1,"inputName":"position","node":"attribute1","output":"val"},null,{"index":3,"inputName":"offset","node":"floatToVec3_2","output":"vec3"}],"connection_points":{"in":[{"name":"amp","type":"vec3"},{"name":"position","type":"vec3"},{"name":"freq","type":"vec3"},{"name":"offset","type":"vec3"}],"out":[{"name":"noise","type":"vec3"}]}},"add1":{"type":"add","params":{"add0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add3":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":4,"inputs":[{"index":0,"inputName":"add0","node":"attribute3","output":"val"},{"index":1,"inputName":"add1","node":"floatToVec3_3","output":"vec3"},{"index":2,"inputName":"add2","node":"noise1","output":"noise"}],"connection_points":{"in":[{"name":"add0","type":"vec3"},{"name":"add1","type":"vec3"},{"name":"add2","type":"vec3"},{"name":"add3","type":"vec3"}],"out":[{"name":"sum","type":"vec3"}]}},"attribute1":{"type":"attribute","params":{"name":"instancePosition","type":2,"texportWhenConnected":1,"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"attribute2":{"type":"attribute","params":{"name":"instancePosition","type":2,"texportWhenConnected":1,"exportWhenConnected":true,"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"inputs":[{"index":0,"inputName":"in","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"param1":{"type":"param","params":{"name":"cursor","type":3},"connection_points":{"in":[],"out":[{"name":"val","type":"vec2"}]}},"vec3ToFloat1":{"type":"vec3ToFloat","params":{"vec":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"vec","node":"attribute1","output":"val"}]},"floatToVec2_1":{"type":"floatToVec2","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"vec3ToFloat1","output":"x"},{"index":1,"inputName":"y","node":"vec3ToFloat1","output":"y"}]},"distance1":{"type":"distance","params":{"p0":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"p1":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"p0","node":"floatToVec2_1","output":"vec2"},{"index":1,"inputName":"p1","node":"param1","output":"val"}],"connection_points":{"in":[{"name":"p0","type":"vec2"},{"name":"p1","type":"vec2"}],"out":[{"name":"val","type":"float"}]}},"smoothstep1":{"type":"smoothstep","params":{"edge0":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.35},"edge1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.03},"x":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[null,null,{"index":2,"inputName":"x","node":"distance1","output":"val"}],"connection_points":{"in":[{"name":"edge0","type":"float"},{"name":"edge1","type":"float"},{"name":"x","type":"float"}],"out":[{"name":"val","type":"float"}]}},"add2":{"type":"add","params":{"add0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"clamp1","output":"val"},{"index":1,"inputName":"add1","node":"multAdd1","output":"val"}],"connection_points":{"in":[{"name":"add0","type":"float"},{"name":"add1","type":"float"},{"name":"add2","type":"float"}],"out":[{"name":"sum","type":"float"}]}},"multAdd1":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.15},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"smoothstep1","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"constant1":{"type":"constant","params":{"float":0.003},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"subtract1":{"type":"subtract","params":{"sub0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"sub0","node":"attribute_POWER_in","output":"val"},{"index":1,"inputName":"sub1","node":"constant1","output":"val"}],"connection_points":{"in":[{"name":"sub0","type":"float"},{"name":"sub1","type":"float"},{"name":"sub2","type":"float"}],"out":[{"name":"subtract","type":"float"}]}},"attribute_POWER_out":{"type":"attribute","params":{"name":"power","texportWhenConnected":1,"exportWhenConnected":true,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"inputs":[{"index":0,"inputName":"in","node":"clamp2","output":"val"}],"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}},"attribute_POWER_in":{"type":"attribute","params":{"name":"power","texportWhenConnected":1,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"multAdd6","output":"val"},{"index":1,"inputName":"y","node":"multAdd6","output":"val"},{"index":2,"inputName":"z","node":"multAdd6","output":"val"}]},"clamp1":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"subtract1","output":"subtract"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"clamp2":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"add2","output":"sum"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"multAdd2":{"type":"multAdd","params":{"value":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"vector3","default_value":[1,1,1],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":[0.30000000000000004,0.30000000000000004,0.30000000000000004]},"postAdd":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"floatToVec3_1","output":"vec3"}],"connection_points":{"in":[{"name":"value","type":"vec3"},{"name":"preAdd","type":"vec3"},{"name":"mult","type":"vec3"},{"name":"postAdd","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"multAdd3":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.09},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"globals1","output":"time"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"floatToVec3_2":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,{"index":1,"inputName":"y","node":"multAdd3","output":"val"},{"index":2,"inputName":"z","node":"multAdd5","output":"val"}]},"attribute3":{"type":"attribute","params":{"name":"restP","type":2,"texportWhenConnected":1,"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"val","type":"vec3"}]}},"mix1":{"type":"mix","params":{"value0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"value1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"blend":{"type":"float","default_value":0.5,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":1}},"inputs":[{"index":0,"inputName":"value0","node":"attribute3","output":"val"},{"index":1,"inputName":"value1","node":"add1","output":"sum"}],"connection_points":{"in":[{"name":"value0","type":"vec3"},{"name":"value1","type":"vec3"},{"name":"blend","type":"float"}],"out":[{"name":"mix","type":"vec3"}]}},"multAdd5":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.01},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"globals1","output":"time"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"floatToVec3_3":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"overriden_options":{}},"z":{"overriden_options":{}}},"inputs":[null,null,{"index":2,"inputName":"z","node":"multAdd4","output":"val"}]},"multAdd4":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.15},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"attribute_POWER_in","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"multAdd6":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.5},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"attribute_POWER_in","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"constant2":{"type":"constant","params":{"float":0.006},"connection_points":{"in":[],"out":[{"name":"val","type":"float"}]}},"subtract2":{"type":"subtract","params":{"sub0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"sub0","node":"attribute_LIGHT_in","output":"val"},{"index":1,"inputName":"sub1","node":"constant2","output":"val"}],"connection_points":{"in":[{"name":"sub0","type":"float"},{"name":"sub1","type":"float"},{"name":"sub2","type":"float"}],"out":[{"name":"subtract","type":"float"}]}},"clamp3":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"subtract2","output":"subtract"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"smoothstep2":{"type":"smoothstep","params":{"edge0":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.35},"edge1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.27},"x":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[null,null,{"index":2,"inputName":"x","node":"distance1","output":"val"}],"connection_points":{"in":[{"name":"edge0","type":"float"},{"name":"edge1","type":"float"},{"name":"x","type":"float"}],"out":[{"name":"val","type":"float"}]}},"multAdd7":{"type":"multAdd","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"preAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"mult":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.15},"postAdd":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"min1","output":"val"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"preAdd","type":"float"},{"name":"mult","type":"float"},{"name":"postAdd","type":"float"}],"out":[{"name":"val","type":"float"}]}},"min1":{"type":"min","params":{"in0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"in1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"in0","node":"smoothstep2","output":"val"},{"index":1,"inputName":"in1","node":"smoothstep3","output":"val"}],"connection_points":{"in":[{"name":"in0","type":"float"},{"name":"in1","type":"float"}],"out":[{"name":"val","type":"float"}]}},"smoothstep3":{"type":"smoothstep","params":{"edge0":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.21},"edge1":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":0.27},"x":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[null,null,{"index":2,"inputName":"x","node":"distance1","output":"val"}],"connection_points":{"in":[{"name":"edge0","type":"float"},{"name":"edge1","type":"float"},{"name":"x","type":"float"}],"out":[{"name":"val","type":"float"}]}},"add3":{"type":"add","params":{"add0":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add1":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"add2":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"add0","node":"clamp3","output":"val"},{"index":1,"inputName":"add1","node":"multAdd7","output":"val"}],"connection_points":{"in":[{"name":"add0","type":"float"},{"name":"add1","type":"float"},{"name":"add2","type":"float"}],"out":[{"name":"sum","type":"float"}]}},"clamp4":{"type":"clamp","params":{"value":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"min":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}},"max":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"value","node":"add3","output":"sum"}],"connection_points":{"in":[{"name":"value","type":"float"},{"name":"min","type":"float"},{"name":"max","type":"float"}],"out":[{"name":"val","type":"float"}]}},"attribute_LIGHT_in":{"type":"attribute","params":{"name":"light","texportWhenConnected":1,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}},"attribute_LIGHT_out":{"type":"attribute","params":{"name":"light","texportWhenConnected":1,"exportWhenConnected":true,"in":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":1,"inputs":[{"index":0,"inputName":"in","node":"clamp4","output":"val"}],"connection_points":{"in":[{"name":"in","type":"float"}],"out":[{"name":"val","type":"float"}]}}},"params":{"material":"../MAT/meshStandardBuilder_PARTICLES","cursor":{"type":"vector2","default_value":[0,0],"options":{"spare":true,"computeOnDirty":true,"cook":false,"dependentOnFoundNode":true},"raw_input":[-17.520323941393166,0],"overriden_options":{"callback":"{}"}}},"inputs":["actor_particles1"],"flags":{"display":true},"persisted_config":{"texture_allocations":{"writable":[{"instancePosition_x_power":[{"name":"instancePosition","size":3,"nodes":["/geo1/particlesSystemGpu1/attribute2","/geo1/particlesSystemGpu1/attribute1"]},{"name":"power","size":1,"nodes":["/geo1/particlesSystemGpu1/attribute_POWER_out","/geo1/particlesSystemGpu1/attribute_POWER_in"]}]},{"light":[{"name":"light","size":1,"nodes":["/geo1/particlesSystemGpu1/attribute_LIGHT_out","/geo1/particlesSystemGpu1/attribute_LIGHT_in"]}]}],"readonly":[{"restP":[{"name":"restP","size":3,"nodes":["/geo1/particlesSystemGpu1/attribute3"]}]}]},"param_uniform_pairs":[["cursor","v_POLY_param_cursor"]],"uniforms_owner":{"metadata":{"version":4.5,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/particlesSystemGpu1-main","type":"ShaderMaterial","depthFunc":3,"depthTest":true,"depthWrite":true,"colorWrite":true,"stencilWrite":false,"stencilWriteMask":255,"stencilFunc":519,"stencilRef":0,"stencilFuncMask":255,"stencilFail":7680,"stencilZFail":7680,"stencilZPass":7680,"forceSinglePass":true,"fog":false,"glslVersion":null,"uniforms":{"v_POLY_param_cursor":{"type":"v2","value":[-17.520323941393166,0]}},"vertexShader":"void main() {\n\tgl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n}","fragmentShader":"void main() {\n\tgl_FragColor = vec4( 1.0, 0.0, 0.0, 1.0 );\n}","lights":false,"clipping":false}}},"attribDelete1":{"type":"attribDelete","params":{"name":"normal"},"inputs":["scatter2"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.52}},"spotLight1":{"type":"spotLight","params":{"decay":0.1,"distance":10,"castShadow":1}},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1","polarTransform2"],"flags":{"display":true}},"areaLight1":{"type":"areaLight","params":{"width":3,"height":3,"showHelper":1}},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.7,1.4469847266117422],"latitude":90,"depth":1.8},"inputs":["merge2"]},"areaLight2":{"type":"areaLight","params":{"color":[0.0069954101845983935,0.23839757380151394,0.8713671191959567],"intensity":9.6,"width":4,"height":2,"showHelper":true}},"polarTransform2":{"type":"polarTransform","params":{"center":[0,1.2731049130670544,1.6569847266117421],"longitude":180,"depth":2},"inputs":["areaLight2"]},"box1":{"type":"box","params":{"sizes":[0.02,3,0.02]}},"copy1":{"type":"copy","params":{"count":5,"t":[0.5,0,0]},"inputs":["box1"]},"merge2":{"type":"merge","inputs":["areaLight1","material1"]},"merge3":{"type":"merge","params":{"compact":1},"inputs":["transform1"]},"material1":{"type":"material","params":{"material":"../MAT/meshStandard1"},"inputs":["merge3"]},"MAT":{"type":"materialsNetwork","nodes":{"meshStandard1":{"type":"meshStandard","params":{"color":[0,0,0]}}}},"transform1":{"type":"transform","params":{"t":["-$CEX","-$CEY","-$CEZ"]},"inputs":["copy1"]}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[-0.31394104377123894,0.956150155257783,0.12384628786311258]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera_DEBUG"]},"perspectiveCamera_DEBUG":{"type":"perspectiveCamera","params":{"position":[-0.3548099268238594,1.645431172283756,3.2870057456102977],"rotation":[-9.936173844027898,-0.6445320755488696,-0.1129056955638231]}},"cameraControls2":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[0.019486627727060557,1.3984727366713416,0.6685507303243576]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera_MAIN"]},"perspectiveCamera_MAIN":{"type":"perspectiveCamera","params":{"position":[0,0.93,3.9]}},"merge1":{"type":"merge","inputs":["cameraControls1","cameraControls2"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"env":{"type":"geo","nodes":{"MAT":{"type":"materialsNetwork","nodes":{"meshStandard_WALLS":{"type":"meshStandard","params":{"color":[0.1878207722902346,0.1878207722902346,0.1878207722902346],"useEnvMap":1,"envMap":"../../../COP/envMap","envMapIntensity":0.13,"metalness":1,"useRoughnessMap":1,"roughnessMap":"../../COP/image1","roughness":0.92}},"meshStandard_PEOPLE":{"type":"meshStandard","params":{"color":[0.036889450395083165,0.036889450395083165,0.036889450395083165]}}}},"box1":{"type":"box","params":{"sizes":[9.98,1,9.98],"center":[0,-0.5,0]}},"box2":{"type":"box","params":{"center":[0,0.5,-0.5]}},"transform1":{"type":"transform","params":{"s":[10,3.5,1]},"inputs":["box2"]},"transform2":{"type":"transform","params":{"t":[0,0.25,0],"s":[4,2,0.5]},"inputs":["box2"]},"boolean1":{"type":"boolean","params":{"operation":1,"additionalAttributes":"uv"},"inputs":["transform1","transform2"]},"merge1":{"type":"merge","params":{"compact":1},"inputs":["box1","boolean1","transform3"]},"material1":{"type":"material","params":{"material":"../MAT/meshStandard_WALLS"},"inputs":["merge1"]},"box3":{"type":"box","params":{"center":[0,3.5,0]}},"transform3":{"type":"transform","params":{"s":[10,1,7.2309526734891145]},"inputs":["box3"]},"COP":{"type":"copNetwork","nodes":{"image1":{"type":"image","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/textures/resources/polyhaven.com/aerial_rocks_02/2k/rough.jpg","tminFilter":1,"tmagFilter":1,"tanisotropy":1,"useRendererMaxAnisotropy":1}}}},"fileOBJ1":{"type":"fileOBJ","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/resources/renderpeople.com/rp_dennis_posed_004_OBJ/rp_dennis_posed_004_2k.obj"}},"transform4":{"type":"transform","params":{"applyOn":1,"t":[-1.10647542189473,0,1.1702537307491765],"r":[0,180,0],"scale":0.3},"inputs":["fileOBJ1"]},"fileOBJ3":{"type":"fileOBJ","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/resources/renderpeople.com/rp_mei_posed_001_OBJ/rp_mei_posed_001_2k.obj"}},"transform6":{"type":"transform","params":{"applyOn":1,"t":[-1.5189097881388562,0,1.1547135065016478],"r":[0,180,0],"scale":0.29},"inputs":["fileOBJ3"]},"merge2":{"type":"merge","inputs":["transform4","transform6"]},"material2":{"type":"material","params":{"group":"*","material":"../MAT/meshStandard_PEOPLE"},"inputs":["merge2"]},"merge3":{"type":"merge","inputs":["material1","material2"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"bgColor":[0,0,0],"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera_MAIN"}},"ui":{"nodes":{"geo1":{"pos":[-50,-350],"nodes":{"plane1":{"pos":[-100,-250]},"transform1":{"pos":[-100,150]},"transform2":{"pos":[-100,0]},"sphere1":{"pos":[-500,1000]},"instance1":{"pos":[-300,1300]},"MAT":{"pos":[-650,1300],"nodes":{"meshStandardBuilder_PARTICLES":{"pos":[0,250],"nodes":{"globals1":{"pos":[-850,-400]},"output1":{"pos":[250,-150]},"instanceTransform1":{"pos":[50,-350]},"attribute1":{"pos":[-350,50]},"constant1":{"pos":[-350,-50]},"constant2":{"pos":[-700,-350]},"mix1":{"pos":[-150,-150]},"attribute2":{"pos":[-600,-50]},"constant3":{"pos":[-350,250]},"constant4":{"pos":[-350,350]},"mix2":{"pos":[-450,-350]},"multScalar1":{"pos":[-600,-200]},"multScalar2":{"pos":[-450,-100]}}},"meshStandardBuilder_INSTANCES":{"pos":[0,100],"nodes":{"globals1":{"pos":[-200,0]},"output1":{"pos":[200,0]},"instanceTransform1":{"pos":[0,0]}}}}},"actor_particles1":{"pos":[-300,1450],"selection":["setParam1"],"nodes":{"particlesSystemReset1":{"pos":[100,-100]},"onScenePause1":{"pos":[-100,-100]},"particlesSystemStepSimulation1":{"pos":[750,300]},"onTick1":{"pos":[-100,100]},"rayFromCursor1":{"pos":[-150,300]},"rayIntersectPlane1":{"pos":[50,400]},"plane1":{"pos":[-150,500]},"setParam1":{"pos":[550,300]},"vec3ToFloat1":{"pos":[200,400]},"floatToVec2_1":{"pos":[350,400]}}},"restAttributes1":{"pos":[-150,750]},"attribCreate1":{"pos":[-150,900]},"scatter2":{"pos":[-100,250]},"pointBuilder1":{"pos":[-150,600],"nodes":{"globals1":{"pos":[-400,0]},"output1":{"pos":[0,0]},"add1":{"pos":[-200,0]},"attribute1":{"pos":[-750,200]},"rand1":{"pos":[-550,200]},"floatToVec3_1":{"pos":[-300,200]},"multAdd1":{"pos":[-450,200]}}},"attribCreate2":{"pos":[-150,1050]},"particlesSystemGpu1":{"pos":[-300,1600],"nodes":{"globals1":{"pos":[-300,-200]},"output1":{"pos":[1500,-400]},"noise1":{"pos":[450,-450]},"add1":{"pos":[1050,-450]},"attribute1":{"pos":[-500,-450]},"attribute2":{"pos":[1500,-600]},"param1":{"pos":[-300,1100]},"vec3ToFloat1":{"pos":[-400,900]},"floatToVec2_1":{"pos":[-300,900]},"distance1":{"pos":[-200,1000]},"smoothstep1":{"pos":[-50,1000]},"add2":{"pos":[500,900]},"multAdd1":{"pos":[100,1000]},"constant1":{"pos":[0,400]},"subtract1":{"pos":[150,250]},"attribute_POWER_out":{"pos":[900,900]},"attribute_POWER_in":{"pos":[-250,250]},"floatToVec3_1":{"pos":[250,-200]},"clamp1":{"pos":[300,250]},"clamp2":{"pos":[700,900]},"multAdd2":{"pos":[350,-200]},"multAdd3":{"pos":[-150,-150]},"floatToVec3_2":{"pos":[0,-150]},"attribute3":{"pos":[750,-600]},"mix1":{"pos":[1250,-600]},"multAdd5":{"pos":[-150,0]},"floatToVec3_3":{"pos":[600,-50]},"multAdd4":{"pos":[500,-50]},"multAdd6":{"pos":[100,-50]},"constant2":{"pos":[0,700]},"subtract2":{"pos":[150,550]},"clamp3":{"pos":[300,550]},"smoothstep2":{"pos":[-50,1250]},"multAdd7":{"pos":[250,1250]},"min1":{"pos":[100,1300]},"smoothstep3":{"pos":[-50,1400]},"add3":{"pos":[500,1250]},"clamp4":{"pos":[700,1250]},"attribute_LIGHT_in":{"pos":[-250,550]},"attribute_LIGHT_out":{"pos":[900,1250]}}},"attribDelete1":{"pos":[-100,400]}}},"COP":{"pos":[-300,-50],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[-50,-250],"selection":["areaLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[750,0]},"merge1":{"pos":[100,400]},"areaLight1":{"pos":[200,-550]},"polarTransform1":{"pos":[300,100]},"areaLight2":{"pos":[550,-100]},"polarTransform2":{"pos":[550,100]},"box1":{"pos":[450,-800]},"copy1":{"pos":[450,-650]},"merge2":{"pos":[300,-50]},"merge3":{"pos":[450,-350]},"material1":{"pos":[450,-200]},"MAT":{"pos":[-150,-200],"nodes":{"meshStandard1":{"pos":[-100,50]}}},"transform1":{"pos":[450,-500]}}},"cameras":{"pos":[-50,-150],"selection":["perspectiveCamera_MAIN"],"nodes":{"cameraControls1":{"pos":[0,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}},"perspectiveCamera_DEBUG":{"pos":[0,-50]},"cameraControls2":{"pos":[300,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}},"perspectiveCamera_MAIN":{"pos":[300,-50]},"merge1":{"pos":[100,350]}}},"env":{"pos":[-50,-450],"nodes":{"MAT":{"pos":[-450,550],"selection":["meshStandard_PEOPLE"],"nodes":{"meshStandard_WALLS":{"pos":[0,300]},"meshStandard_PEOPLE":{"pos":[0,500]}}},"box1":{"pos":[-200,50]},"box2":{"pos":[250,50]},"transform1":{"pos":[250,300]},"transform2":{"pos":[550,300]},"boolean1":{"pos":[300,500]},"merge1":{"pos":[0,750]},"material1":{"pos":[0,950]},"box3":{"pos":[0,200]},"transform3":{"pos":[0,350]},"COP":{"pos":[-450,750],"nodes":{"image1":{"pos":[-300,0]}}},"fileOBJ1":{"pos":[800,500]},"transform4":{"pos":[800,700]},"fileOBJ3":{"pos":[1300,500]},"transform6":{"pos":[1300,700]},"merge2":{"pos":[1050,950]},"material2":{"pos":[1050,1150]},"merge3":{"pos":[50,1400]}}}}},"shaders":{"/geo1/MAT/meshStandardBuilder_PARTICLES":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef USE_SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULAR_COLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nattribute vec2 particlesSimUv;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\n\tparticlesSimUvVarying = particlesSimUv;\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).xyz;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tparticlesSimUvVarying = particlesSimUv;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\nuniform sampler2D texture_light;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/MAT/meshStandardBuilder_PARTICLES/instanceTransform1\nvarying vec2 particlesSimUvVarying;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/constant2\n\tvec3 v_POLY_constant2_val = vec3(0.12213877222015301, 0.4452011945063733, 0.5647115056965487);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute2\n\tfloat v_POLY_attribute2_val = texture2D( texture_light, particlesSimUvVarying ).x;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/attribute1\n\tfloat v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particlesSimUvVarying ).w;\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar1\n\tvec3 v_POLY_multScalar1_val = (1.8*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/multScalar2\n\tvec3 v_POLY_multScalar2_val = (0.33*v_POLY_constant2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix2\n\tvec3 v_POLY_mix2_mix = mix(v_POLY_constant2_val, v_POLY_multScalar1_val, v_POLY_attribute2_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/mix1\n\tvec3 v_POLY_mix1_mix = mix(v_POLY_mix2_mix, v_POLY_multScalar2_val, v_POLY_attribute1_val);\n\t\n\t// /geo1/MAT/meshStandardBuilder_PARTICLES/output1\n\tdiffuseColor.xyz = v_POLY_mix1_mix;\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/geo1/MAT/meshStandardBuilder_INSTANCES":{"vertex":"#define STANDARD\nvarying vec3 vViewPosition;\n#ifdef USE_TRANSMISSION\n\tvarying vec3 vWorldPosition;\n#endif\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n#ifdef USE_TRANSMISSION\n\tvWorldPosition = worldPosition.xyz;\n#endif\n}","fragment":"#define STANDARD\n#ifdef PHYSICAL\n\t#define IOR\n\t#define USE_SPECULAR\n#endif\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float roughness;\nuniform float metalness;\nuniform float opacity;\n#ifdef IOR\n\tuniform float ior;\n#endif\n#ifdef USE_SPECULAR\n\tuniform float specularIntensity;\n\tuniform vec3 specularColor;\n\t#ifdef USE_SPECULAR_COLORMAP\n\t\tuniform sampler2D specularColorMap;\n\t#endif\n\t#ifdef USE_SPECULAR_INTENSITYMAP\n\t\tuniform sampler2D specularIntensityMap;\n\t#endif\n#endif\n#ifdef USE_CLEARCOAT\n\tuniform float clearcoat;\n\tuniform float clearcoatRoughness;\n#endif\n#ifdef USE_IRIDESCENCE\n\tuniform float iridescence;\n\tuniform float iridescenceIOR;\n\tuniform float iridescenceThicknessMinimum;\n\tuniform float iridescenceThicknessMaximum;\n#endif\n#ifdef USE_SHEEN\n\tuniform vec3 sheenColor;\n\tuniform float sheenRoughness;\n\t#ifdef USE_SHEEN_COLORMAP\n\t\tuniform sampler2D sheenColorMap;\n\t#endif\n\t#ifdef USE_SHEEN_ROUGHNESSMAP\n\t\tuniform sampler2D sheenRoughnessMap;\n\t#endif\n#endif\nvarying vec3 vViewPosition;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <iridescence_fragment>\n#include <cube_uv_reflection_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_physical_pars_fragment>\n#include <fog_pars_fragment>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_physical_pars_fragment>\n#include <transmission_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <clearcoat_pars_fragment>\n#include <iridescence_pars_fragment>\n#include <roughnessmap_pars_fragment>\n#include <metalnessmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive * POLY_emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\tfloat roughnessFactor = roughness * POLY_roughness;\n\n#ifdef USE_ROUGHNESSMAP\n\n\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\n\n\t// reads channel G, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\troughnessFactor *= texelRoughness.g;\n\n#endif\n\n\tfloat metalnessFactor = metalness * POLY_metalness;\n\n#ifdef USE_METALNESSMAP\n\n\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\n\n\t// reads channel B, compatible with a combined OcclusionRoughnessMetallic (RGB) texture\n\tmetalnessFactor *= texelMetalness.b;\n\n#endif\n\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <clearcoat_normal_fragment_begin>\n\t#include <clearcoat_normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_physical_fragment>\n\t#include <lights_fragment_begin>\nif(POLY_SSSModel.isActive){\n\tRE_Direct_Scattering(directLight, geometry, POLY_SSSModel, reflectedLight);\n}\n\n\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 totalDiffuse = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse;\n\tvec3 totalSpecular = reflectedLight.directSpecular + reflectedLight.indirectSpecular;\n\t#include <transmission_fragment>\n\tvec3 outgoingLight = totalDiffuse + totalSpecular + totalEmissiveRadiance;\n\t#ifdef USE_SHEEN\n\t\tfloat sheenEnergyComp = 1.0 - 0.157 * max3( material.sheenColor );\n\t\toutgoingLight = outgoingLight * sheenEnergyComp + sheenSpecular;\n\t#endif\n\t#ifdef USE_CLEARCOAT\n\t\tfloat dotNVcc = saturate( dot( geometry.clearcoatNormal, geometry.viewDir ) );\n\t\tvec3 Fcc = F_Schlick( material.clearcoatF0, material.clearcoatF90, dotNVcc );\n\t\toutgoingLight = outgoingLight * ( 1.0 - material.clearcoat * Fcc ) + clearcoatSpecular * material.clearcoat;\n\t#endif\n\t#include <output_fragment>\n\t#include <tonemapping_fragment>\n\t#include <encodings_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nstruct SSSModel {\n\tbool isActive;\n\tvec3 color;\n\tfloat thickness;\n\tfloat power;\n\tfloat scale;\n\tfloat distortion;\n\tfloat ambient;\n\tfloat attenuation;\n};\n\nvoid RE_Direct_Scattering(\n\tconst in IncidentLight directLight,\n\tconst in GeometricContext geometry,\n\tconst in SSSModel sssModel,\n\tinout ReflectedLight reflectedLight\n\t){\n\tvec3 scatteringHalf = normalize(directLight.direction + (geometry.normal * sssModel.distortion));\n\tfloat scatteringDot = pow(saturate(dot(geometry.viewDir, -scatteringHalf)), sssModel.power) * sssModel.scale;\n\tvec3 scatteringIllu = (scatteringDot + sssModel.ambient) * (sssModel.color * (1.0-sssModel.thickness));\n\treflectedLight.directDiffuse += scatteringIllu * sssModel.attenuation * directLight.color;\n}\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshStandardBuilder_INSTANCES/output1\n\tfloat POLY_metalness = 1.0;\n\tfloat POLY_roughness = 1.0;\n\tvec3 POLY_emissive = vec3(1.0, 1.0, 1.0);\n\tSSSModel POLY_SSSModel = SSSModel(/*isActive*/false,/*color*/vec3(1.0, 1.0, 1.0), /*thickness*/0.1, /*power*/2.0, /*scale*/16.0, /*distortion*/0.1,/*ambient*/0.4,/*attenuation*/0.8 );\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"},"/geo1/particlesSystemGpu1":{"instancePosition_x_power":"#include <common>\n\n// removed:\n//// INSERT DEFINE\n\n\n\n// /geo1/particlesSystemGpu1/noise1\n// Modulo 289 without a division (only multiplications)\nfloat mod289(float x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec2 mod289(vec2 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec3 mod289(vec3 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec4 mod289(vec4 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\n// Modulo 7 without a division\nvec3 mod7(vec3 x) {\n return x - floor(x * (1.0 / 7.0)) * 7.0;\n}\n\n// Permutation polynomial: (34x^2 + x) mod 289\nfloat permute(float x) {\n return mod289(((x*34.0)+1.0)*x);\n}\nvec3 permute(vec3 x) {\n return mod289((34.0 * x + 1.0) * x);\n}\nvec4 permute(vec4 x) {\n return mod289(((x*34.0)+1.0)*x);\n}\n\nfloat taylorInvSqrt(float r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\nvec4 taylorInvSqrt(vec4 r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\n\nvec2 fade(vec2 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec3 fade(vec3 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec4 fade(vec4 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\n//\n// Description : Array and textureless GLSL 2D/3D/4D simplex \n// noise functions.\n// Author : Ian McEwan, Ashima Arts.\n// Maintainer : stegu\n// Lastmod : 20110822 (ijm)\n// License : Copyright (C) 2011 Ashima Arts. All rights reserved.\n// Distributed under the MIT License. See LICENSE file.\n// https://github.com/ashima/webgl-noise\n// https://github.com/stegu/webgl-noise\n// \n\n\n\nfloat snoise(vec3 v)\n { \n const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;\n const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);\n\n// First corner\n vec3 i = floor(v + dot(v, C.yyy) );\n vec3 x0 = v - i + dot(i, C.xxx) ;\n\n// Other corners\n vec3 g = step(x0.yzx, x0.xyz);\n vec3 l = 1.0 - g;\n vec3 i1 = min( g.xyz, l.zxy );\n vec3 i2 = max( g.xyz, l.zxy );\n\n // x0 = x0 - 0.0 + 0.0 * C.xxx;\n // x1 = x0 - i1 + 1.0 * C.xxx;\n // x2 = x0 - i2 + 2.0 * C.xxx;\n // x3 = x0 - 1.0 + 3.0 * C.xxx;\n vec3 x1 = x0 - i1 + C.xxx;\n vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y\n vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y\n\n// Permutations\n i = mod289(i); \n vec4 p = permute( permute( permute( \n i.z + vec4(0.0, i1.z, i2.z, 1.0 ))\n + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) \n + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));\n\n// Gradients: 7x7 points over a square, mapped onto an octahedron.\n// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)\n float n_ = 0.142857142857; // 1.0/7.0\n vec3 ns = n_ * D.wyz - D.xzx;\n\n vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)\n\n vec4 x_ = floor(j * ns.z);\n vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)\n\n vec4 x = x_ *ns.x + ns.yyyy;\n vec4 y = y_ *ns.x + ns.yyyy;\n vec4 h = 1.0 - abs(x) - abs(y);\n\n vec4 b0 = vec4( x.xy, y.xy );\n vec4 b1 = vec4( x.zw, y.zw );\n\n //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;\n //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;\n vec4 s0 = floor(b0)*2.0 + 1.0;\n vec4 s1 = floor(b1)*2.0 + 1.0;\n vec4 sh = -step(h, vec4(0.0));\n\n vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;\n vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;\n\n vec3 p0 = vec3(a0.xy,h.x);\n vec3 p1 = vec3(a0.zw,h.y);\n vec3 p2 = vec3(a1.xy,h.z);\n vec3 p3 = vec3(a1.zw,h.w);\n\n//Normalise gradients\n vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n p0 *= norm.x;\n p1 *= norm.y;\n p2 *= norm.z;\n p3 *= norm.w;\n\n// Mix final noise value\n vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n m = m * m;\n return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), \n dot(p2,x2), dot(p3,x3) ) );\n }\n\n\nfloat fbm_snoise_geo1_particlesSystemGpu1_noise1(in vec3 st) {\n\tfloat value = 0.0;\n\tfloat amplitude = 1.0;\n\tfor (int i = 0; i < 7; i++) {\n\t\tvalue += amplitude * snoise(st);\n\t\tst *= 2.0;\n\t\tamplitude *= 0.5;\n\t}\n\treturn value;\n}\n\n\n\n\n\n\n\n\n// /geo1/particlesSystemGpu1/attribute3\nuniform sampler2D texture_restP;\n\n// /geo1/particlesSystemGpu1/attribute_POWER_in\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/particlesSystemGpu1/globals1\nuniform float time;\n\n// /geo1/particlesSystemGpu1/param1\nuniform vec2 v_POLY_param_cursor;\n\n// /geo1/particlesSystemGpu1/attribute_LIGHT_in\nuniform sampler2D texture_light;\n\n\n\n\n\nvoid main() {\n\n\tvec2 particleUv = (gl_FragCoord.xy / resolution.xy);\n\n// removed:\n//\t// INSERT BODY\n\n\n\n\t// /geo1/particlesSystemGpu1/attribute3\n\tvec3 v_POLY_attribute3_val = texture2D( texture_restP, particleUv ).xyz;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_POWER_in\n\tfloat v_POLY_attribute_POWER_in_val = texture2D( texture_instancePosition_x_power, particleUv ).w;\n\tgl_FragColor.w = v_POLY_attribute_POWER_in_val;\n\t\n\t// /geo1/particlesSystemGpu1/attribute1\n\tvec3 v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particleUv ).xyz;\n\tgl_FragColor.xyz = v_POLY_attribute1_val;\n\t\n\t// /geo1/particlesSystemGpu1/globals1\n\tfloat v_POLY_globals1_time = time;\n\t\n\t// /geo1/particlesSystemGpu1/constant1\n\tfloat v_POLY_constant1_val = 0.003;\n\t\n\t// /geo1/particlesSystemGpu1/param1\n\tvec2 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_LIGHT_in\n\tfloat v_POLY_attribute_LIGHT_in_val = texture2D( texture_light, particleUv ).x;\n\t\n\t// /geo1/particlesSystemGpu1/constant2\n\tfloat v_POLY_constant2_val = 0.006;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd4\n\tfloat v_POLY_multAdd4_val = (0.15*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd6\n\tfloat v_POLY_multAdd6_val = (0.5*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd3\n\tfloat v_POLY_multAdd3_val = (0.09*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd5\n\tfloat v_POLY_multAdd5_val = (0.01*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/subtract1\n\tfloat v_POLY_subtract1_subtract = (v_POLY_attribute_POWER_in_val - v_POLY_constant1_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_attribute1_val.x;\n\tfloat v_POLY_vec3ToFloat1_y = v_POLY_attribute1_val.y;\n\t\n\t// /geo1/particlesSystemGpu1/subtract2\n\tfloat v_POLY_subtract2_subtract = (v_POLY_attribute_LIGHT_in_val - v_POLY_constant2_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_3\n\tvec3 v_POLY_floatToVec3_3_vec3 = vec3(0.0, 0.0, v_POLY_multAdd4_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_multAdd6_val, v_POLY_multAdd6_val, v_POLY_multAdd6_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_2\n\tvec3 v_POLY_floatToVec3_2_vec3 = vec3(0.0, v_POLY_multAdd3_val, v_POLY_multAdd5_val);\n\t\n\t// /geo1/particlesSystemGpu1/clamp1\n\tfloat v_POLY_clamp1_val = clamp(v_POLY_subtract1_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_y);\n\t\n\t// /geo1/particlesSystemGpu1/clamp3\n\tfloat v_POLY_clamp3_val = clamp(v_POLY_subtract2_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd2\n\tvec3 v_POLY_multAdd2_val = (vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004)*(v_POLY_floatToVec3_1_vec3 + vec3(0.0, 0.0, 0.0))) + vec3(0.0, 0.0, 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/distance1\n\tfloat v_POLY_distance1_val = distance(v_POLY_floatToVec2_1_vec2, v_POLY_param1_val);\n\t\n\t// /geo1/particlesSystemGpu1/noise1\n\tfloat v_POLY_noise1_noisex = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(0.0, 0.0, 0.0)))).x;\n\tfloat v_POLY_noise1_noisey = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(1000.0, 1000.0, 1000.0)))).y;\n\tfloat v_POLY_noise1_noisez = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(2000.0, 2000.0, 2000.0)))).z;\n\tvec3 v_POLY_noise1_noise = vec3(v_POLY_noise1_noisex, v_POLY_noise1_noisey, v_POLY_noise1_noisez);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep1\n\tfloat v_POLY_smoothstep1_val = smoothstep(0.35, 0.03, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep2\n\tfloat v_POLY_smoothstep2_val = smoothstep(0.35, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep3\n\tfloat v_POLY_smoothstep3_val = smoothstep(0.21, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/add1\n\tvec3 v_POLY_add1_sum = (v_POLY_attribute3_val + v_POLY_floatToVec3_3_vec3 + v_POLY_noise1_noise + vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/particlesSystemGpu1/multAdd1\n\tfloat v_POLY_multAdd1_val = (0.15*(v_POLY_smoothstep1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/min1\n\tfloat v_POLY_min1_val = min(v_POLY_smoothstep2_val, v_POLY_smoothstep3_val);\n\t\n\t// /geo1/particlesSystemGpu1/attribute2\n\tgl_FragColor.xyz = v_POLY_add1_sum;\n\t\n\t// /geo1/particlesSystemGpu1/add2\n\tfloat v_POLY_add2_sum = (v_POLY_clamp1_val + v_POLY_multAdd1_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd7\n\tfloat v_POLY_multAdd7_val = (0.15*(v_POLY_min1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/clamp2\n\tfloat v_POLY_clamp2_val = clamp(v_POLY_add2_sum, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/add3\n\tfloat v_POLY_add3_sum = (v_POLY_clamp3_val + v_POLY_multAdd7_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/attribute_POWER_out\n\tgl_FragColor.w = v_POLY_clamp2_val;\n\t\n\t// /geo1/particlesSystemGpu1/clamp4\n\tfloat v_POLY_clamp4_val = clamp(v_POLY_add3_sum, 0.0, 1.0);\n\n\n\n\n}","light":"#include <common>\n\n// removed:\n//// INSERT DEFINE\n\n\n\n// /geo1/particlesSystemGpu1/noise1\n// Modulo 289 without a division (only multiplications)\nfloat mod289(float x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec2 mod289(vec2 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec3 mod289(vec3 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\nvec4 mod289(vec4 x) {\n return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\n// Modulo 7 without a division\nvec3 mod7(vec3 x) {\n return x - floor(x * (1.0 / 7.0)) * 7.0;\n}\n\n// Permutation polynomial: (34x^2 + x) mod 289\nfloat permute(float x) {\n return mod289(((x*34.0)+1.0)*x);\n}\nvec3 permute(vec3 x) {\n return mod289((34.0 * x + 1.0) * x);\n}\nvec4 permute(vec4 x) {\n return mod289(((x*34.0)+1.0)*x);\n}\n\nfloat taylorInvSqrt(float r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\nvec4 taylorInvSqrt(vec4 r)\n{\n return 1.79284291400159 - 0.85373472095314 * r;\n}\n\nvec2 fade(vec2 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec3 fade(vec3 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\nvec4 fade(vec4 t) {\n return t*t*t*(t*(t*6.0-15.0)+10.0);\n}\n//\n// Description : Array and textureless GLSL 2D/3D/4D simplex \n// noise functions.\n// Author : Ian McEwan, Ashima Arts.\n// Maintainer : stegu\n// Lastmod : 20110822 (ijm)\n// License : Copyright (C) 2011 Ashima Arts. All rights reserved.\n// Distributed under the MIT License. See LICENSE file.\n// https://github.com/ashima/webgl-noise\n// https://github.com/stegu/webgl-noise\n// \n\n\n\nfloat snoise(vec3 v)\n { \n const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;\n const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);\n\n// First corner\n vec3 i = floor(v + dot(v, C.yyy) );\n vec3 x0 = v - i + dot(i, C.xxx) ;\n\n// Other corners\n vec3 g = step(x0.yzx, x0.xyz);\n vec3 l = 1.0 - g;\n vec3 i1 = min( g.xyz, l.zxy );\n vec3 i2 = max( g.xyz, l.zxy );\n\n // x0 = x0 - 0.0 + 0.0 * C.xxx;\n // x1 = x0 - i1 + 1.0 * C.xxx;\n // x2 = x0 - i2 + 2.0 * C.xxx;\n // x3 = x0 - 1.0 + 3.0 * C.xxx;\n vec3 x1 = x0 - i1 + C.xxx;\n vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y\n vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y\n\n// Permutations\n i = mod289(i); \n vec4 p = permute( permute( permute( \n i.z + vec4(0.0, i1.z, i2.z, 1.0 ))\n + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) \n + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));\n\n// Gradients: 7x7 points over a square, mapped onto an octahedron.\n// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)\n float n_ = 0.142857142857; // 1.0/7.0\n vec3 ns = n_ * D.wyz - D.xzx;\n\n vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)\n\n vec4 x_ = floor(j * ns.z);\n vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)\n\n vec4 x = x_ *ns.x + ns.yyyy;\n vec4 y = y_ *ns.x + ns.yyyy;\n vec4 h = 1.0 - abs(x) - abs(y);\n\n vec4 b0 = vec4( x.xy, y.xy );\n vec4 b1 = vec4( x.zw, y.zw );\n\n //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;\n //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;\n vec4 s0 = floor(b0)*2.0 + 1.0;\n vec4 s1 = floor(b1)*2.0 + 1.0;\n vec4 sh = -step(h, vec4(0.0));\n\n vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;\n vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;\n\n vec3 p0 = vec3(a0.xy,h.x);\n vec3 p1 = vec3(a0.zw,h.y);\n vec3 p2 = vec3(a1.xy,h.z);\n vec3 p3 = vec3(a1.zw,h.w);\n\n//Normalise gradients\n vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n p0 *= norm.x;\n p1 *= norm.y;\n p2 *= norm.z;\n p3 *= norm.w;\n\n// Mix final noise value\n vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n m = m * m;\n return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), \n dot(p2,x2), dot(p3,x3) ) );\n }\n\n\nfloat fbm_snoise_geo1_particlesSystemGpu1_noise1(in vec3 st) {\n\tfloat value = 0.0;\n\tfloat amplitude = 1.0;\n\tfor (int i = 0; i < 7; i++) {\n\t\tvalue += amplitude * snoise(st);\n\t\tst *= 2.0;\n\t\tamplitude *= 0.5;\n\t}\n\treturn value;\n}\n\n\n\n\n\n\n\n\n// /geo1/particlesSystemGpu1/attribute3\nuniform sampler2D texture_restP;\n\n// /geo1/particlesSystemGpu1/attribute_POWER_in\nuniform sampler2D texture_instancePosition_x_power;\n\n// /geo1/particlesSystemGpu1/globals1\nuniform float time;\n\n// /geo1/particlesSystemGpu1/param1\nuniform vec2 v_POLY_param_cursor;\n\n// /geo1/particlesSystemGpu1/attribute_LIGHT_in\nuniform sampler2D texture_light;\n\n\n\n\n\nvoid main() {\n\n\tvec2 particleUv = (gl_FragCoord.xy / resolution.xy);\n\n// removed:\n//\t// INSERT BODY\n\n\n\n\t// /geo1/particlesSystemGpu1/attribute3\n\tvec3 v_POLY_attribute3_val = texture2D( texture_restP, particleUv ).xyz;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_POWER_in\n\tfloat v_POLY_attribute_POWER_in_val = texture2D( texture_instancePosition_x_power, particleUv ).w;\n\t\n\t// /geo1/particlesSystemGpu1/attribute1\n\tvec3 v_POLY_attribute1_val = texture2D( texture_instancePosition_x_power, particleUv ).xyz;\n\t\n\t// /geo1/particlesSystemGpu1/globals1\n\tfloat v_POLY_globals1_time = time;\n\t\n\t// /geo1/particlesSystemGpu1/constant1\n\tfloat v_POLY_constant1_val = 0.003;\n\t\n\t// /geo1/particlesSystemGpu1/param1\n\tvec2 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/particlesSystemGpu1/attribute_LIGHT_in\n\tfloat v_POLY_attribute_LIGHT_in_val = texture2D( texture_light, particleUv ).x;\n\tgl_FragColor.x = v_POLY_attribute_LIGHT_in_val;\n\t\n\t// /geo1/particlesSystemGpu1/constant2\n\tfloat v_POLY_constant2_val = 0.006;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd4\n\tfloat v_POLY_multAdd4_val = (0.15*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd6\n\tfloat v_POLY_multAdd6_val = (0.5*(v_POLY_attribute_POWER_in_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd3\n\tfloat v_POLY_multAdd3_val = (0.09*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/multAdd5\n\tfloat v_POLY_multAdd5_val = (0.01*(v_POLY_globals1_time + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/subtract1\n\tfloat v_POLY_subtract1_subtract = (v_POLY_attribute_POWER_in_val - v_POLY_constant1_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/vec3ToFloat1\n\tfloat v_POLY_vec3ToFloat1_x = v_POLY_attribute1_val.x;\n\tfloat v_POLY_vec3ToFloat1_y = v_POLY_attribute1_val.y;\n\t\n\t// /geo1/particlesSystemGpu1/subtract2\n\tfloat v_POLY_subtract2_subtract = (v_POLY_attribute_LIGHT_in_val - v_POLY_constant2_val - 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_3\n\tvec3 v_POLY_floatToVec3_3_vec3 = vec3(0.0, 0.0, v_POLY_multAdd4_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_multAdd6_val, v_POLY_multAdd6_val, v_POLY_multAdd6_val);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec3_2\n\tvec3 v_POLY_floatToVec3_2_vec3 = vec3(0.0, v_POLY_multAdd3_val, v_POLY_multAdd5_val);\n\t\n\t// /geo1/particlesSystemGpu1/clamp1\n\tfloat v_POLY_clamp1_val = clamp(v_POLY_subtract1_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/floatToVec2_1\n\tvec2 v_POLY_floatToVec2_1_vec2 = vec2(v_POLY_vec3ToFloat1_x, v_POLY_vec3ToFloat1_y);\n\t\n\t// /geo1/particlesSystemGpu1/clamp3\n\tfloat v_POLY_clamp3_val = clamp(v_POLY_subtract2_subtract, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd2\n\tvec3 v_POLY_multAdd2_val = (vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004)*(v_POLY_floatToVec3_1_vec3 + vec3(0.0, 0.0, 0.0))) + vec3(0.0, 0.0, 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/distance1\n\tfloat v_POLY_distance1_val = distance(v_POLY_floatToVec2_1_vec2, v_POLY_param1_val);\n\t\n\t// /geo1/particlesSystemGpu1/noise1\n\tfloat v_POLY_noise1_noisex = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(0.0, 0.0, 0.0)))).x;\n\tfloat v_POLY_noise1_noisey = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(1000.0, 1000.0, 1000.0)))).y;\n\tfloat v_POLY_noise1_noisez = (v_POLY_multAdd2_val*fbm_snoise_geo1_particlesSystemGpu1_noise1((v_POLY_attribute1_val*vec3(0.30000000000000004, 0.30000000000000004, 0.30000000000000004))+(v_POLY_floatToVec3_2_vec3+vec3(2000.0, 2000.0, 2000.0)))).z;\n\tvec3 v_POLY_noise1_noise = vec3(v_POLY_noise1_noisex, v_POLY_noise1_noisey, v_POLY_noise1_noisez);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep1\n\tfloat v_POLY_smoothstep1_val = smoothstep(0.35, 0.03, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep2\n\tfloat v_POLY_smoothstep2_val = smoothstep(0.35, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/smoothstep3\n\tfloat v_POLY_smoothstep3_val = smoothstep(0.21, 0.27, v_POLY_distance1_val);\n\t\n\t// /geo1/particlesSystemGpu1/add1\n\tvec3 v_POLY_add1_sum = (v_POLY_attribute3_val + v_POLY_floatToVec3_3_vec3 + v_POLY_noise1_noise + vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/particlesSystemGpu1/multAdd1\n\tfloat v_POLY_multAdd1_val = (0.15*(v_POLY_smoothstep1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/min1\n\tfloat v_POLY_min1_val = min(v_POLY_smoothstep2_val, v_POLY_smoothstep3_val);\n\t\n\t// /geo1/particlesSystemGpu1/add2\n\tfloat v_POLY_add2_sum = (v_POLY_clamp1_val + v_POLY_multAdd1_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/multAdd7\n\tfloat v_POLY_multAdd7_val = (0.15*(v_POLY_min1_val + 0.0)) + 0.0;\n\t\n\t// /geo1/particlesSystemGpu1/clamp2\n\tfloat v_POLY_clamp2_val = clamp(v_POLY_add2_sum, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/add3\n\tfloat v_POLY_add3_sum = (v_POLY_clamp3_val + v_POLY_multAdd7_val + 0.0);\n\t\n\t// /geo1/particlesSystemGpu1/clamp4\n\tfloat v_POLY_clamp4_val = clamp(v_POLY_add3_sum, 0.0, 1.0);\n\t\n\t// /geo1/particlesSystemGpu1/attribute_LIGHT_out\n\tgl_FragColor.x = v_POLY_clamp4_val;\n\n\n\n\n}"}},"jsFunctionBodies":{"/geo1/actor_particles1":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /geo1/actor_particles1/rayFromCursor1\n\tv_POLY_rayFromCursor1_Ray = computed(() => globalsRayFromCursor());\n\n\t// /geo1/actor_particles1/plane1\n\tv_POLY_plane1_Plane = computed(() => planeSet(VAR__plane1_normal.set(0, 0, 1), 0.0, VAR__plane1__1));\n\n\t// /geo1/actor_particles1/rayIntersectPlane1\n\tv_POLY_rayIntersectPlane1_position = computed(() =>\n\t\trayIntersectPlane(this.v_POLY_rayFromCursor1_Ray.value, this.v_POLY_plane1_Plane.value, VAR__rayIntersectPlane1_)\n\t);\n\n\t// /geo1/actor_particles1/vec3ToFloat1\n\tv_POLY_vec3ToFloat1_x = computed(() => VAR__vec3ToFloat1_vec3.copy(this.v_POLY_rayIntersectPlane1_position.value).x);\n\tv_POLY_vec3ToFloat1_y = computed(() => VAR__vec3ToFloat1_vec3.copy(this.v_POLY_rayIntersectPlane1_position.value).y);\n\n\t// /geo1/actor_particles1/floatToVec2_1\n\tv_POLY_floatToVec2_1_vec2 = computed(() =>\n\t\tfloatToVec2(this.v_POLY_vec3ToFloat1_x.value, this.v_POLY_vec3ToFloat1_y.value, VAR__floatToVec2_1_)\n\t);\n\n\t// /geo1/actor_particles1/setParam1\n\tv_POLY_setParam1_getParamSinceNoInput = computed(() => getParam(\"/geo1/particlesSystemGpu1/cursor\"));\n\n\t// /geo1/actor_particles1/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\tconstructor(node, object3D) {\n\t\tsuper(node, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonScenePause() {\n\t\tthis.onScenePause1();\n\t}\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /geo1/actor_particles1/onScenePause1\n\tonScenePause1() {\n\t\tthis.particlesSystemReset1(0);\n\t}\n\n\t// /geo1/actor_particles1/onTick1\n\tonTick1() {\n\t\tthis.setParam1(0);\n\t}\n\n\t// /geo1/actor_particles1/particlesSystemReset1\n\tparticlesSystemReset1() {\n\t\tparticlesSystemReset(this.object3D);\n\t}\n\n\t// /geo1/actor_particles1/setParam1\n\tsetParam1() {\n\t\tsetParamVector2(\n\t\t\tthis.v_POLY_setParam1_getParamSinceNoInput.value,\n\t\t\tVAR__setParam1_val.copy(this.v_POLY_floatToVec2_1_vec2.value),\n\t\t\t1.0\n\t\t);\n\t\tthis.particlesSystemStepSimulation1(0);\n\t}\n\n\t// /geo1/actor_particles1/particlesSystemStepSimulation1\n\tparticlesSystemStepSimulation1() {\n\t\tparticlesSystemStepSimulation(this.object3D, { texture_: this.v_POLY_particlesSystemStepSimulation1_ });\n\t}\n}\nreturn CustomActorEvaluator;\n","/geo1/pointBuilder1":"// insert defines\n// insert members\n// insert after constructor\nconst CustomPointBuilderEvaluator = function () {\n\t// insert body\n\n\t// /geo1/pointBuilder1/globals1\n\tv_POLY_globals1_position.copy(pointContainer.position);\n\n\t// /geo1/pointBuilder1/attribute1\n\tv_POLY_attribute1_val = attributesDict.get(\"idn\");\n\n\t// /geo1/pointBuilder1/rand1\n\tconst v_POLY_rand1_rand = mathFloat_2(rand, v_POLY_attribute1_val, 0.0);\n\n\t// /geo1/pointBuilder1/multAdd1\n\tconst v_POLY_multAdd1_val = mathFloat_4(multAdd, v_POLY_rand1_rand, 0.0, -0.5, 0.0);\n\n\t// /geo1/pointBuilder1/floatToVec3_1\n\tconst v_POLY_floatToVec3_1_vec3 = floatToVec3(0.0, 0.0, v_POLY_multAdd1_val, VAR__floatToVec3_1_);\n\n\t// /geo1/pointBuilder1/add1\n\tconst v_POLY_add1_sum = addVector(\n\t\tVAR__add1_add0.copy(v_POLY_globals1_position),\n\t\tVAR__add1_add1.copy(v_POLY_floatToVec3_1_vec3),\n\t\tVAR__add1_add2.set(0, 0, 0)\n\t);\n\n\t// /geo1/pointBuilder1/output1\n\tpointContainer.position.copy(v_POLY_add1_sum);\n};\nreturn CustomPointBuilderEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.5013333333333333,"split_panel0":{"split_ratio":0.588774341351661,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera_MAIN","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false,"initLayoutData":{"camera":{"position":{"x":100,"y":-200},"zoom":1},"history":{"2":{"position":{"x":0,"y":0},"zoom":1},"36":{"position":{"x":100,"y":-200},"zoom":1},"104":{"position":{"x":100,"y":-200},"zoom":1},"107":{"position":{"x":-400,"y":-100},"zoom":1},"175":{"position":{"x":0,"y":-50},"zoom":1},"243":{"position":{"x":100,"y":-200},"zoom":1},"432":{"position":{"x":0,"y":-175},"zoom":1},"444":{"position":{"x":-300,"y":-200},"zoom":1},"464":{"position":{"x":0,"y":-200},"zoom":1},"509":{"position":{"x":-350,"y":-350},"zoom":1},"638":{"position":{"x":300,"y":25},"zoom":1},"1147":{"position":{"x":0,"y":0},"zoom":1},"1251":{"position":{"x":50,"y":-50},"zoom":1},"1327":{"position":{"x":0,"y":0},"zoom":1},"1405":{"position":{"x":0,"y":0},"zoom":1},"1649":{"position":{"x":0,"y":0},"zoom":1},"1814":{"position":{"x":0,"y":0},"zoom":1},"1962":{"position":{"x":0,"y":0},"zoom":1},"2040":{"position":{"x":0,"y":-200},"zoom":1},"2356":{"position":{"x":0,"y":0},"zoom":1},"2698":{"position":{"x":0,"y":0},"zoom":1},"2987":{"position":{"x":200,"y":0},"zoom":1},"3172":{"position":{"x":-450,"y":550},"zoom":1},"3585":{"position":{"x":0,"y":0},"zoom":1}},"paramsDisplayed":false,"linkIndex":1}}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":null,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"panelTypes":["network","params","viewer"],"currentPanelIndex":0,"panel_data":{"camera":{"position":{"x":140.99442105842655,"y":-1143.22451080513},"zoom":0.5862221069335929},"history":{"2":{"position":{"x":-50.93274174158252,"y":307.2887736596621},"zoom":1.0222221069335933},"36":{"position":{"x":140.99442105842655,"y":-1143.22451080513},"zoom":0.5862221069335929},"104":{"position":{"x":-68.26088854207657,"y":-244.02174409531074},"zoom":1.0222221069335933},"107":{"position":{"x":-235.7533067556872,"y":-179.4659149834593},"zoom":0.8002221069335932},"175":{"position":{"x":-173.00588495404205,"y":-173.01990383602603},"zoom":0.9472221069335934},"243":{"position":{"x":-149.34062620946926,"y":-949.8303685639672},"zoom":0.714722118462456},"432":{"position":{"x":0,"y":-175},"zoom":0.615222106933593},"444":{"position":{"x":-413.7800466060882,"y":-183.74570762770168},"zoom":0.615222106933593},"464":{"position":{"x":-42.06522213551914,"y":-198.0434780402084},"zoom":1.0222221069335933},"509":{"position":{"x":-729.379697206445,"y":344.4321640909933},"zoom":0.5772221069335929},"638":{"position":{"x":308.12714618614916,"y":-2.632297032907136},"zoom":0.615222106933593},"1147":{"position":{"x":-221.08698145644942,"y":-163.3695836425976},"zoom":1.0222221069335933},"1251":{"position":{"x":-267.71479205932536,"y":82.79089571164411},"zoom":0.6032221069335932},"1327":{"position":{"x":-41.08696115562335,"y":8.804348819062145},"zoom":1.0222221069335933},"1405":{"position":{"x":-576.3909504853902,"y":-236.10718574872618},"zoom":0.7792221069335932},"1649":{"position":{"x":0,"y":0},"zoom":1.0222221069335933},"1814":{"position":{"x":298.05367398584673,"y":11.745822248928919},"zoom":0.8212221069335931},"1962":{"position":{"x":-263.3873316675067,"y":-63.88543789382079},"zoom":0.8922221069335933},"2040":{"position":{"x":-359.7263389932991,"y":-332.94234267143656},"zoom":0.7672499066162105},"2356":{"position":{"x":0,"y":0},"zoom":1.0222221069335933},"2698":{"position":{"x":-62.561102433617236,"y":-18.246988209805025},"zoom":0.7672499066162105},"2987":{"position":{"x":141.70228609683141,"y":-147.25541763050543},"zoom":0.7462221069335931},"3172":{"position":{"x":-402.7355030626578,"y":-973.5595124745149},"zoom":0.5986912299262144},"3585":{"position":{"x":-223.03863405035676,"y":-63.88543789382079},"zoom":0.8922221069335933}},"paramsDisplayed":false,"linkIndex":1}},"split_mode":"horizontal"},"currentNodes":["/geo1","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/env/MAT","/env","/env/MAT","/env","/","/lights","/lights/MAT","/lights","/lights/MAT","/lights","/lights/MAT","/lights","/lights/MAT","/lights","/","/cameras","/","/geo1","/geo1/particlesSystemGpu1","/geo1"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":19,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"createExport":false,"checkRemoteAssetsUse":true,"minimizeFilesCount":false,"compressJs":true,"createZip":false,"runPostExportCommand":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/meshStandard;mat/meshStandardBuilder;obj/copNetwork;obj/geo;sop/actor;sop/areaLight;sop/attribCreate;sop/attribDelete;sop/boolean;sop/box;sop/cameraControls;sop/copNetwork;sop/copy;sop/fileOBJ;sop/hemisphereLight;sop/instance;sop/material;sop/materialsNetwork;sop/merge;sop/particlesSystemGpu;sop/perspectiveCamera;sop/plane;sop/pointBuilder;sop/polarTransform;sop/restAttributes;sop/scatter;sop/sphere;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_STANDARD;GL_PARTICLES;JS_ACTOR;JS_POINT_BUILDER
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/plane1":"sop/plane","/geo1/transform1":"sop/transform","/geo1/transform2":"sop/transform","/geo1/sphere1":"sop/sphere","/geo1/instance1":"sop/instance","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshStandardBuilder_PARTICLES":"mat/meshStandardBuilder","/geo1/MAT/meshStandardBuilder_INSTANCES":"mat/meshStandardBuilder","/geo1/actor_particles1":"sop/actor","/geo1/restAttributes1":"sop/restAttributes","/geo1/attribCreate1":"sop/attribCreate","/geo1/scatter2":"sop/scatter","/geo1/pointBuilder1":"sop/pointBuilder","/geo1/attribCreate2":"sop/attribCreate","/geo1/particlesSystemGpu1":"sop/particlesSystemGpu","/geo1/attribDelete1":"sop/attribDelete","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/merge1":"sop/merge","/lights/areaLight1":"sop/areaLight","/lights/polarTransform1":"sop/polarTransform","/lights/areaLight2":"sop/areaLight","/lights/polarTransform2":"sop/polarTransform","/lights/box1":"sop/box","/lights/copy1":"sop/copy","/lights/merge2":"sop/merge","/lights/merge3":"sop/merge","/lights/material1":"sop/material","/lights/MAT":"sop/materialsNetwork","/lights/MAT/meshStandard1":"mat/meshStandard","/lights/transform1":"sop/transform","/cameras":"obj/geo","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls","/cameras/perspectiveCamera_DEBUG":"sop/perspectiveCamera","/cameras/cameraControls2":"sop/cameraControls","/cameras/cameraControls2/cameraOrbitControls1":"event/cameraOrbitControls","/cameras/perspectiveCamera_MAIN":"sop/perspectiveCamera","/cameras/merge1":"sop/merge","/env":"obj/geo","/env/MAT":"sop/materialsNetwork","/env/MAT/meshStandard_WALLS":"mat/meshStandard","/env/MAT/meshStandard_PEOPLE":"mat/meshStandard","/env/box1":"sop/box","/env/box2":"sop/box","/env/transform1":"sop/transform","/env/transform2":"sop/transform","/env/boolean1":"sop/boolean","/env/merge1":"sop/merge","/env/material1":"sop/material","/env/box3":"sop/box","/env/transform3":"sop/transform","/env/COP":"sop/copNetwork","/env/COP/image1":"cop/image","/env/fileOBJ1":"sop/fileOBJ","/env/transform4":"sop/transform","/env/fileOBJ3":"sop/fileOBJ","/env/transform6":"sop/transform","/env/merge2":"sop/merge","/env/material2":"sop/material","/env/merge3":"sop/merge"}
Js version
Editor version
Engine version
Logout
0%
There was a problem displaying your scene:
view scene source