Name
*
Code
{"properties":{"frame":1612,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1","versions":{"polygonjs":"1.5.54"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"fileOBJ1":{"type":"fileOBJ","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/wolf.obj"}},"plane1":{"type":"plane","params":{"size":[21,21],"stepSize":0.50075}},"transform1":{"type":"transform","params":{"group":"*","r":[0,-90,0]},"inputs":["fileOBJ1"]},"merge1":{"type":"merge","params":{"compact":true},"inputs":["hierarchy1"]},"hierarchy1":{"type":"hierarchy","params":{"mode":1},"inputs":["transform1"]},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["merge1","plane1"]},"MAT":{"type":"materialsNetwork","nodes":{"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"globals1":{"type":"globals"}},"persisted_config":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","color":16777215,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"blendColor":0,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"blendColor":0,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","blendColor":0},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","blendColor":0,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"actorInstance1":{"type":"actorInstance","nodes":{"onTick1":{"type":"onTick"},"plane1":{"type":"plane"},"rayFromCursor1":{"type":"rayFromCursor"},"rayIntersectPlane1":{"type":"rayIntersectPlane","inputs":[{"index":0,"inputName":"Ray","node":"rayFromCursor1","output":"Ray"},{"index":1,"inputName":"Plane","node":"plane1","output":"Plane"}]},"setInstanceLookAt1":{"type":"setInstanceLookAt","params":{"ptnum":{"overriden_options":{}},"targetPosition":{"overriden_options":{}},"up":{"overriden_options":{}},"lerp":{"overriden_options":{}}},"maxInputsCount":6,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,null,{"index":3,"inputName":"targetPosition","node":"rayIntersectPlane1","output":"position"}]}},"inputs":["instance1"],"flags":{"display":true},"persisted_config":{"variableNames":["VAR__plane1_normal","VAR__plane1__1","VAR__rayIntersectPlane1_","VAR__setInstanceLookAt1_targetPosition","VAR__setInstanceLookAt1_up"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Plane","data":{"normal":[1,0,0],"constant":0}},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["globalsRayFromCursor","planeSet","rayIntersectPlane","globalsTime","globalsTimeDelta","getPointIndex","setPointInstanceLookAt","setPointIndex"],"serializedParamConfigs":[],"eventDatas":[{"type":"pointermove","emitter":"canvas","jsType":"rayFromCursor"},{"type":"touchmove","emitter":"canvas","jsType":"rayFromCursor"}]}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"ground":{"type":"geo","nodes":{"planeHelper1":{"type":"planeHelper","flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.52}},"spotLight1":{"type":"spotLight","params":{"decay":0.1,"distance":10,"castShadow":true}},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.7,0],"latitude":25.2,"depth":3},"inputs":["spotLight1"]},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","params":{"position":[3.3,3.3,3.3]}},"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[-0.908317017621,0.5067999101431635,0.8618430388214149]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1"}},"ui":{"nodes":{"geo1":{"pos":[50,-300],"nodes":{"fileOBJ1":{"pos":[-200,0]},"plane1":{"pos":[350,50]},"transform1":{"pos":[-200,100]},"merge1":{"pos":[-200,400]},"hierarchy1":{"pos":[-200,250]},"instance1":{"pos":[150,650]},"MAT":{"pos":[-50,650],"nodes":{"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[0,0]},"output1":{"pos":[200,0]},"globals1":{"pos":[-200,0]}}}}},"actorInstance1":{"pos":[150,800],"nodes":{"onTick1":{"pos":[200,-50]},"plane1":{"pos":[100,350]},"rayFromCursor1":{"pos":[50,200]},"rayIntersectPlane1":{"pos":[300,250]},"setInstanceLookAt1":{"pos":[650,0]}}}}},"ground":{"pos":[50,-400],"nodes":{"planeHelper1":{"pos":[-100,200]}}},"COP":{"pos":[-200,0],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[50,-200],"selection":["hemisphereLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[300,-50]},"polarTransform1":{"pos":[300,150]},"merge1":{"pos":[100,300]}}},"cameras":{"pos":[50,-100],"nodes":{"perspectiveCamera1":{"pos":[0,-50]},"cameraControls1":{"pos":[0,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}}}}}},"shaders":{"/geo1/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n\t#include <batching_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <alphahash_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <alphahash_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <opaque_fragment>\n\t#include <tonemapping_fragment>\n\t#include <colorspace_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/geo1/actorInstance1":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /geo1/actorInstance1/rayFromCursor1\n\tv_POLY_rayFromCursor1_Ray = computed(() => globalsRayFromCursor());\n\n\t// /geo1/actorInstance1/plane1\n\tv_POLY_plane1_Plane = computed(() => planeSet(VAR__plane1_normal.set(0, 1, 0), 0.0, VAR__plane1__1));\n\n\t// /geo1/actorInstance1/rayIntersectPlane1\n\tv_POLY_rayIntersectPlane1_position = computed(() =>\n\t\trayIntersectPlane(this.v_POLY_rayFromCursor1_Ray.value, this.v_POLY_plane1_Plane.value, VAR__rayIntersectPlane1_)\n\t);\n\n\t// /geo1/actorInstance1/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\tconstructor(node, object3D) {\n\t\tsuper(node, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /geo1/actorInstance1/onTick1\n\tonTick1() {\n\t\tconst pointsCount = pointsCountFromObject(this.object3D);\n\t\tfor (let i = 0; i < pointsCount; i++) {\n\t\t\tsetPointIndex(this.object3D, i);\n\t\t\tthis.setInstanceLookAt1(0);\n\t\t}\n\t\tif (this.object3D.isMesh) {\n\t\t\tcorePrimitiveClassFactory(this.object3D).computeVertexNormalsIfAttributeVersionChanged(this.object3D.geometry);\n\t\t}\n\t}\n\n\t// /geo1/actorInstance1/setInstanceLookAt1\n\tsetInstanceLookAt1() {\n\t\tsetPointInstanceLookAt(\n\t\t\tthis.object3D,\n\t\t\tgetPointIndex(this.object3D),\n\t\t\tVAR__setInstanceLookAt1_targetPosition.copy(this.v_POLY_rayIntersectPlane1_position.value),\n\t\t\tVAR__setInstanceLookAt1_up.set(0, 1, 0),\n\t\t\t1.0\n\t\t);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.6304,"split_panel0":{"split_ratio":0.6801853997682503,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera1","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":1577,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"panelTypes":["network","params","viewer"],"currentPanelIndex":0,"panel_data":{"camera":{"position":{"x":-106.91466861228989,"y":-454.86577289768354},"zoom":0.6842221069335926},"history":{"2":{"position":{"x":-14.746468988013412,"y":209.1052383132887},"zoom":1.0852221069335928},"1258":{"position":{"x":-52.10238993100339,"y":-77.00758443933358},"zoom":0.9962221069335933},"1571":{"position":{"x":-106.91466861228989,"y":-454.86577289768354},"zoom":0.6842221069335926},"1646":{"position":{"x":-75,"y":-175},"zoom":0.9012221069335928},"2503":{"position":{"x":-300.9061961015802,"y":-126.56270243388994},"zoom":0.9012221069335928}},"paramsDisplayed":false,"linkIndex":1}},"split_mode":"horizontal"},"currentNodes":["/geo1","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/","/","/","/geo1","/geo1/actorInstance1","/geo1","/geo1","/geo1/actorInstance1","/geo1","/geo1/actorInstance1","/geo1"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":10,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"checkRemoteAssetsUse":true,"minimizeFilesCount":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/meshLambertBuilder;obj/copNetwork;obj/geo;sop/actorInstance;sop/cameraControls;sop/fileOBJ;sop/hemisphereLight;sop/hierarchy;sop/instance;sop/materialsNetwork;sop/merge;sop/perspectiveCamera;sop/plane;sop/planeHelper;sop/polarTransform;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/fileOBJ1":"sop/fileOBJ","/geo1/plane1":"sop/plane","/geo1/transform1":"sop/transform","/geo1/merge1":"sop/merge","/geo1/hierarchy1":"sop/hierarchy","/geo1/instance1":"sop/instance","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/geo1/actorInstance1":"sop/actorInstance","/ground":"obj/geo","/ground/planeHelper1":"sop/planeHelper","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/polarTransform1":"sop/polarTransform","/lights/merge1":"sop/merge","/cameras":"obj/geo","/cameras/perspectiveCamera1":"sop/perspectiveCamera","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls"}
Js version
Editor version
Engine version
Name
*
Code
{"properties":{"frame":1612,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1","versions":{"polygonjs":"1.5.54"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"fileOBJ1":{"type":"fileOBJ","params":{"url":"https://raw.githubusercontent.com/polygonjs/polygonjs-assets/master/models/wolf.obj"}},"plane1":{"type":"plane","params":{"size":[21,21],"stepSize":0.50075}},"transform1":{"type":"transform","params":{"group":"*","r":[0,-90,0]},"inputs":["fileOBJ1"]},"merge1":{"type":"merge","params":{"compact":true},"inputs":["hierarchy1"]},"hierarchy1":{"type":"hierarchy","params":{"mode":1},"inputs":["transform1"]},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["merge1","plane1"]},"MAT":{"type":"materialsNetwork","nodes":{"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"}]},"globals1":{"type":"globals"}},"persisted_config":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","color":16777215,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"blendColor":0,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"blendColor":0,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","blendColor":0},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","blendColor":0,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"actorInstance1":{"type":"actorInstance","nodes":{"onTick1":{"type":"onTick"},"plane1":{"type":"plane"},"rayFromCursor1":{"type":"rayFromCursor"},"rayIntersectPlane1":{"type":"rayIntersectPlane","inputs":[{"index":0,"inputName":"Ray","node":"rayFromCursor1","output":"Ray"},{"index":1,"inputName":"Plane","node":"plane1","output":"Plane"}]},"setInstanceLookAt1":{"type":"setInstanceLookAt","params":{"ptnum":{"overriden_options":{}},"targetPosition":{"overriden_options":{}},"up":{"overriden_options":{}},"lerp":{"overriden_options":{}}},"maxInputsCount":6,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,null,{"index":3,"inputName":"targetPosition","node":"rayIntersectPlane1","output":"position"}]}},"inputs":["instance1"],"flags":{"display":true},"persisted_config":{"variableNames":["VAR__plane1_normal","VAR__plane1__1","VAR__rayIntersectPlane1_","VAR__setInstanceLookAt1_targetPosition","VAR__setInstanceLookAt1_up"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Plane","data":{"normal":[1,0,0],"constant":0}},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["globalsRayFromCursor","planeSet","rayIntersectPlane","globalsTime","globalsTimeDelta","getPointIndex","setPointInstanceLookAt","setPointIndex"],"serializedParamConfigs":[],"eventDatas":[{"type":"pointermove","emitter":"canvas","jsType":"rayFromCursor"},{"type":"touchmove","emitter":"canvas","jsType":"rayFromCursor"}]}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"ground":{"type":"geo","nodes":{"planeHelper1":{"type":"planeHelper","flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.52}},"spotLight1":{"type":"spotLight","params":{"decay":0.1,"distance":10,"castShadow":true}},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.7,0],"latitude":25.2,"depth":3},"inputs":["spotLight1"]},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","params":{"position":[3.3,3.3,3.3]}},"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[-0.908317017621,0.5067999101431635,0.8618430388214149]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1"}},"ui":{"nodes":{"geo1":{"pos":[50,-300],"nodes":{"fileOBJ1":{"pos":[-200,0]},"plane1":{"pos":[350,50]},"transform1":{"pos":[-200,100]},"merge1":{"pos":[-200,400]},"hierarchy1":{"pos":[-200,250]},"instance1":{"pos":[150,650]},"MAT":{"pos":[-50,650],"nodes":{"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[0,0]},"output1":{"pos":[200,0]},"globals1":{"pos":[-200,0]}}}}},"actorInstance1":{"pos":[150,800],"nodes":{"onTick1":{"pos":[200,-50]},"plane1":{"pos":[100,350]},"rayFromCursor1":{"pos":[50,200]},"rayIntersectPlane1":{"pos":[300,250]},"setInstanceLookAt1":{"pos":[650,0]}}}}},"ground":{"pos":[50,-400],"nodes":{"planeHelper1":{"pos":[-100,200]}}},"COP":{"pos":[-200,0],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[50,-200],"selection":["hemisphereLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[300,-50]},"polarTransform1":{"pos":[300,150]},"merge1":{"pos":[100,300]}}},"cameras":{"pos":[50,-100],"nodes":{"perspectiveCamera1":{"pos":[0,-50]},"cameraControls1":{"pos":[0,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}}}}}},"shaders":{"/geo1/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphcolor_vertex>\n\t#include <batching_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <alphahash_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <alphahash_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <opaque_fragment>\n\t#include <tonemapping_fragment>\n\t#include <colorspace_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/geo1/actorInstance1":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /geo1/actorInstance1/rayFromCursor1\n\tv_POLY_rayFromCursor1_Ray = computed(() => globalsRayFromCursor());\n\n\t// /geo1/actorInstance1/plane1\n\tv_POLY_plane1_Plane = computed(() => planeSet(VAR__plane1_normal.set(0, 1, 0), 0.0, VAR__plane1__1));\n\n\t// /geo1/actorInstance1/rayIntersectPlane1\n\tv_POLY_rayIntersectPlane1_position = computed(() =>\n\t\trayIntersectPlane(this.v_POLY_rayFromCursor1_Ray.value, this.v_POLY_plane1_Plane.value, VAR__rayIntersectPlane1_)\n\t);\n\n\t// /geo1/actorInstance1/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\tconstructor(node, object3D) {\n\t\tsuper(node, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /geo1/actorInstance1/onTick1\n\tonTick1() {\n\t\tconst pointsCount = pointsCountFromObject(this.object3D);\n\t\tfor (let i = 0; i < pointsCount; i++) {\n\t\t\tsetPointIndex(this.object3D, i);\n\t\t\tthis.setInstanceLookAt1(0);\n\t\t}\n\t\tif (this.object3D.isMesh) {\n\t\t\tcorePrimitiveClassFactory(this.object3D).computeVertexNormalsIfAttributeVersionChanged(this.object3D.geometry);\n\t\t}\n\t}\n\n\t// /geo1/actorInstance1/setInstanceLookAt1\n\tsetInstanceLookAt1() {\n\t\tsetPointInstanceLookAt(\n\t\t\tthis.object3D,\n\t\t\tgetPointIndex(this.object3D),\n\t\t\tVAR__setInstanceLookAt1_targetPosition.copy(this.v_POLY_rayIntersectPlane1_position.value),\n\t\t\tVAR__setInstanceLookAt1_up.set(0, 1, 0),\n\t\t\t1.0\n\t\t);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.6304,"split_panel0":{"split_ratio":0.6801853997682503,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera1","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":1577,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"panelTypes":["network","params","viewer"],"currentPanelIndex":0,"panel_data":{"camera":{"position":{"x":-106.91466861228989,"y":-454.86577289768354},"zoom":0.6842221069335926},"history":{"2":{"position":{"x":-14.746468988013412,"y":209.1052383132887},"zoom":1.0852221069335928},"1258":{"position":{"x":-52.10238993100339,"y":-77.00758443933358},"zoom":0.9962221069335933},"1571":{"position":{"x":-106.91466861228989,"y":-454.86577289768354},"zoom":0.6842221069335926},"1646":{"position":{"x":-75,"y":-175},"zoom":0.9012221069335928},"2503":{"position":{"x":-300.9061961015802,"y":-126.56270243388994},"zoom":0.9012221069335928}},"paramsDisplayed":false,"linkIndex":1}},"split_mode":"horizontal"},"currentNodes":["/geo1","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/","/","/","/geo1","/geo1/actorInstance1","/geo1","/geo1","/geo1/actorInstance1","/geo1","/geo1/actorInstance1","/geo1"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":10,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"checkRemoteAssetsUse":true,"minimizeFilesCount":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/meshLambertBuilder;obj/copNetwork;obj/geo;sop/actorInstance;sop/cameraControls;sop/fileOBJ;sop/hemisphereLight;sop/hierarchy;sop/instance;sop/materialsNetwork;sop/merge;sop/perspectiveCamera;sop/plane;sop/planeHelper;sop/polarTransform;sop/spotLight;sop/transform
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/fileOBJ1":"sop/fileOBJ","/geo1/plane1":"sop/plane","/geo1/transform1":"sop/transform","/geo1/merge1":"sop/merge","/geo1/hierarchy1":"sop/hierarchy","/geo1/instance1":"sop/instance","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/geo1/actorInstance1":"sop/actorInstance","/ground":"obj/geo","/ground/planeHelper1":"sop/planeHelper","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/polarTransform1":"sop/polarTransform","/lights/merge1":"sop/merge","/cameras":"obj/geo","/cameras/perspectiveCamera1":"sop/perspectiveCamera","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls"}
Js version
Editor version
Engine version
Logout
0%
There was a problem displaying your scene:
view scene source