Name
*
Code
{"properties":{"frame":688,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1","versions":{"polygonjs":"1.5.54"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"plane1":{"type":"plane","params":{"size":[21,21],"stepSize":0.50075}},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["sphere1","plane1"]},"MAT":{"type":"materialsNetwork","nodes":{"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"},{"index":2,"inputName":"color","node":"varyingRead1","output":"fragment"}]},"globals1":{"type":"globals"},"attribute1":{"type":"attribute","params":{"name":"instancePosition","type":2},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"param1":{"type":"param","params":{"name":"cursor","type":4},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"subtract1":{"type":"subtract","params":{"sub0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub2":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"sub0","node":"attribute1","output":"val"},{"index":1,"inputName":"sub1","node":"param1","output":"val"}],"connection_points":{"in":[{"name":"sub0","type":"vec3"},{"name":"sub1","type":"vec3"},{"name":"sub2","type":"vec3"}],"out":[{"name":"subtract","type":"vec3"}]}},"normalize1":{"type":"normalize","params":{"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"in","node":"subtract1","output":"subtract"}],"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"normalized","type":"vec3"}]}},"dot1":{"type":"dot","params":{"vec0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"vec1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"vec0","node":"instanceTransform1","output":"normal"},{"index":1,"inputName":"vec1","node":"normalize1","output":"normalized"}],"connection_points":{"in":[{"name":"vec0","type":"vec3"},{"name":"vec1","type":"vec3"}],"out":[{"name":"val","type":"float"}]}},"hsvToRgb1":{"type":"hsvToRgb","params":{"hsv":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"hsv","node":"floatToVec3_1","output":"vec3"}]},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"raw_input":0.73,"overriden_options":{}},"z":{"raw_input":0.79,"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"fitTo01_1","output":"val"}]},"varyingWrite1":{"type":"varyingWrite","params":{"name":"baseColor","type":2,"vertex":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"vertex","node":"oklabToRgb1","output":"rgb"}],"connection_points":{"in":[{"name":"vertex","type":"vec3"}],"out":[]}},"varyingRead1":{"type":"varyingRead","params":{"name":"baseColor","type":2},"connection_points":{"in":[],"out":[{"name":"fragment","type":"vec3"}]}},"oklabToRgb1":{"type":"oklabToRgb","params":{"oklab":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"oklab","node":"floatToVec3_1","output":"vec3"}]},"fitTo01_1":{"type":"fitTo01","params":{"val":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"srcMin":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":-1},"srcMax":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"val","node":"dot1","output":"val"}],"connection_points":{"in":[{"name":"val","type":"float"},{"name":"srcMin","type":"float"},{"name":"srcMax","type":"float"}],"out":[{"name":"val","type":"float"}]}}},"params":{"cursor":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"computeOnDirty":true,"cook":false,"dependentOnFoundNode":true},"overriden_options":{"callback":"{}"}}},"persisted_config":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","color":16777215,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"blendColor":0,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"blendColor":0,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","blendColor":0},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","blendColor":0,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"sphere1":{"type":"sphere","params":{"radius":0.16}},"actor_cursor_to_material":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"rayFromCursor1":{"type":"rayFromCursor"},"plane1":{"type":"plane"},"rayIntersectPlane1":{"type":"rayIntersectPlane","inputs":[{"index":0,"inputName":"Ray","node":"rayFromCursor1","output":"Ray"},{"index":1,"inputName":"Plane","node":"plane1","output":"Plane"}]},"setMaterialUniform1":{"type":"setMaterialUniform","params":{"type":5,"Vector3":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"uniformName":{"type":"string","default_value":"","options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":"cursor"},"lerp":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":5,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"Vector3","node":"rayIntersectPlane1","output":"position"}],"connection_points":{"in":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Material","type":"Material","isArray":false},{"name":"Vector3","type":"Vector3","isArray":false},{"name":"uniformName","type":"string","isArray":false},{"name":"lerp","type":"float","isArray":false}],"out":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Material","type":"Material","isArray":false},{"name":"Vector3","type":"Vector3","isArray":false},{"name":"uniformName","type":"string","isArray":false},{"name":"lerp","type":"float","isArray":false}]}}},"inputs":["instance1"],"flags":{"display":true},"persisted_config":{"variableNames":["VAR__plane1_normal","VAR__plane1__1","VAR__rayIntersectPlane1_","VAR__setMaterialUniform1_Vector3"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Plane","data":{"normal":[1,0,0],"constant":0}},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["globalsRayFromCursor","planeSet","rayIntersectPlane","globalsTime","globalsTimeDelta","setMaterialUniformVectorColor"],"serializedParamConfigs":[],"eventDatas":[{"type":"pointermove","emitter":"canvas","jsType":"rayFromCursor"},{"type":"touchmove","emitter":"canvas","jsType":"rayFromCursor"}]}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.52}},"spotLight1":{"type":"spotLight","params":{"decay":0.1,"distance":10,"castShadow":1}},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.7,0],"latitude":25.2,"depth":3},"inputs":["spotLight1"]},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","params":{"position":[9.284955689069058,8.40661446997631,0.8031107798005633],"rotation":[-89.70195130016043,38.86689688152615,89.525038667217]}},"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[0.0747668366743038,-3.0200473553475122,0.7469559701377474]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1"}},"ui":{"nodes":{"geo1":{"pos":[-50,-350],"selection":["MAT"],"nodes":{"plane1":{"pos":[200,250]},"instance1":{"pos":[-100,600]},"MAT":{"pos":[-350,600],"selection":["meshLambertBuilder_INSTANCES"],"nodes":{"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[-750,0]},"output1":{"pos":[550,0]},"globals1":{"pos":[-1200,-50]},"attribute1":{"pos":[-1200,350]},"param1":{"pos":[-1200,550]},"subtract1":{"pos":[-1000,450]},"normalize1":{"pos":[-850,450]},"dot1":{"pos":[-500,300]},"hsvToRgb1":{"pos":[50,300]},"floatToVec3_1":{"pos":[-100,300]},"varyingWrite1":{"pos":[200,300]},"varyingRead1":{"pos":[350,300]},"oklabToRgb1":{"pos":[50,450]},"fitTo01_1":{"pos":[-300,300]}}}}},"sphere1":{"pos":[-300,250]},"actor_cursor_to_material":{"pos":[-100,750],"selection":["onTick1"],"nodes":{"onTick1":{"pos":[-100,0]},"rayFromCursor1":{"pos":[-150,200]},"plane1":{"pos":[-150,350]},"rayIntersectPlane1":{"pos":[50,300]},"setMaterialUniform1":{"pos":[400,250]}}}}},"COP":{"pos":[-300,-50],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[-50,-250],"selection":["hemisphereLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[300,-50]},"polarTransform1":{"pos":[300,150]},"merge1":{"pos":[100,300]}}},"cameras":{"pos":[-50,-150],"nodes":{"perspectiveCamera1":{"pos":[0,-50]},"cameraControls1":{"pos":[0,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}}}}}},"shaders":{"/geo1/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphcolor_vertex>\n\t#include <batching_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <alphahash_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <alphahash_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <opaque_fragment>\n\t#include <tonemapping_fragment>\n\t#include <colorspace_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/geo1/actor_cursor_to_material":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /geo1/actor_cursor_to_material/rayFromCursor1\n\tv_POLY_rayFromCursor1_Ray = computed(() => globalsRayFromCursor());\n\n\t// /geo1/actor_cursor_to_material/plane1\n\tv_POLY_plane1_Plane = computed(() => planeSet(VAR__plane1_normal.set(0, 1, 0), 0.0, VAR__plane1__1));\n\n\t// /geo1/actor_cursor_to_material/rayIntersectPlane1\n\tv_POLY_rayIntersectPlane1_position = computed(() =>\n\t\trayIntersectPlane(this.v_POLY_rayFromCursor1_Ray.value, this.v_POLY_plane1_Plane.value, VAR__rayIntersectPlane1_)\n\t);\n\n\t// /geo1/actor_cursor_to_material/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\tconstructor(node, object3D) {\n\t\tsuper(node, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /geo1/actor_cursor_to_material/onTick1\n\tonTick1() {\n\t\tthis.setMaterialUniform1(0);\n\t}\n\n\t// /geo1/actor_cursor_to_material/setMaterialUniform1\n\tsetMaterialUniform1() {\n\t\tsetMaterialUniformVectorColor(\n\t\t\tthis.object3D.material,\n\t\t\t\"cursor\",\n\t\t\tVAR__setMaterialUniform1_Vector3.copy(this.v_POLY_rayIntersectPlane1_position.value),\n\t\t\t1.0,\n\t\t\ttrue,\n\t\t\ttrue\n\t\t);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.5,"split_panel0":{"split_ratio":0.5543217692883486,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera1","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":756,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"panelTypes":["network","params","viewer"],"currentPanelIndex":0,"panel_data":{"camera":{"position":{"x":0,"y":-50},"zoom":1.0222221069335933},"history":{"2":{"position":{"x":-88.10665897762269,"y":215.33224154945745},"zoom":1.0222221069335933},"36":{"position":{"x":90.30982638039622,"y":-535.6795413493485},"zoom":0.9522221069335932},"295":{"position":{"x":0,"y":0},"zoom":0.43527473192321764},"327":{"position":{"x":319.5062368914969,"y":-271.48266090331725},"zoom":0.43527473192321764},"1160":{"position":{"x":-31.304351356665407,"y":5.869565879374764},"zoom":1.0222221069335933},"1163":{"position":{"x":319.5062368914969,"y":-271.48266090331725},"zoom":0.43527473192321764},"1431":{"position":{"x":-182.55542984590875,"y":-86.75613047118728},"zoom":0.9522221069335932}},"paramsDisplayed":false,"linkIndex":1}},"split_mode":"horizontal"},"currentNodes":["/cameras","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/","/geo1","/","/geo1","/geo1/MAT","/geo1","/","/geo1","/geo1/MAT","/geo1/MAT/meshLambertBuilder_INSTANCES","/geo1/MAT","/geo1","/geo1/actor_cursor_to_material","/geo1","/geo1/MAT","/geo1/MAT/meshLambertBuilder_INSTANCES","/geo1/MAT","/geo1","/","/cameras"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":19,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"checkRemoteAssetsUse":true,"minimizeFilesCount":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/meshLambertBuilder;obj/copNetwork;obj/geo;sop/actor;sop/cameraControls;sop/hemisphereLight;sop/instance;sop/materialsNetwork;sop/merge;sop/perspectiveCamera;sop/plane;sop/polarTransform;sop/sphere;sop/spotLight
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/plane1":"sop/plane","/geo1/instance1":"sop/instance","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/geo1/sphere1":"sop/sphere","/geo1/actor_cursor_to_material":"sop/actor","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/polarTransform1":"sop/polarTransform","/lights/merge1":"sop/merge","/cameras":"obj/geo","/cameras/perspectiveCamera1":"sop/perspectiveCamera","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls"}
Js version
Editor version
Engine version
Name
*
Code
{"properties":{"frame":688,"maxFrame":600,"maxFrameLocked":false,"realtimeState":true,"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1","versions":{"polygonjs":"1.5.54"}},"root":{"type":"root","nodes":{"geo1":{"type":"geo","nodes":{"plane1":{"type":"plane","params":{"size":[21,21],"stepSize":0.50075}},"instance1":{"type":"instance","params":{"material":"../MAT/meshLambertBuilder_INSTANCES"},"inputs":["sphere1","plane1"]},"MAT":{"type":"materialsNetwork","nodes":{"meshLambertBuilder_INSTANCES":{"type":"meshLambertBuilder","nodes":{"instanceTransform1":{"type":"instanceTransform"},"output1":{"type":"output","inputs":[{"index":0,"inputName":"position","node":"instanceTransform1","output":"position"},{"index":1,"inputName":"normal","node":"instanceTransform1","output":"normal"},{"index":2,"inputName":"color","node":"varyingRead1","output":"fragment"}]},"globals1":{"type":"globals"},"attribute1":{"type":"attribute","params":{"name":"instancePosition","type":2},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"param1":{"type":"param","params":{"name":"cursor","type":4},"connection_points":{"in":[],"out":[{"name":"val","type":"vec3"}]}},"subtract1":{"type":"subtract","params":{"sub0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"sub2":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":3,"inputs":[{"index":0,"inputName":"sub0","node":"attribute1","output":"val"},{"index":1,"inputName":"sub1","node":"param1","output":"val"}],"connection_points":{"in":[{"name":"sub0","type":"vec3"},{"name":"sub1","type":"vec3"},{"name":"sub2","type":"vec3"}],"out":[{"name":"subtract","type":"vec3"}]}},"normalize1":{"type":"normalize","params":{"in":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"in","node":"subtract1","output":"subtract"}],"connection_points":{"in":[{"name":"in","type":"vec3"}],"out":[{"name":"normalized","type":"vec3"}]}},"dot1":{"type":"dot","params":{"vec0":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"vec1":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"vec0","node":"instanceTransform1","output":"normal"},{"index":1,"inputName":"vec1","node":"normalize1","output":"normalized"}],"connection_points":{"in":[{"name":"vec0","type":"vec3"},{"name":"vec1","type":"vec3"}],"out":[{"name":"val","type":"float"}]}},"hsvToRgb1":{"type":"hsvToRgb","params":{"hsv":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"hsv","node":"floatToVec3_1","output":"vec3"}]},"floatToVec3_1":{"type":"floatToVec3","params":{"x":{"overriden_options":{}},"y":{"raw_input":0.73,"overriden_options":{}},"z":{"raw_input":0.79,"overriden_options":{}}},"inputs":[{"index":0,"inputName":"x","node":"fitTo01_1","output":"val"}]},"varyingWrite1":{"type":"varyingWrite","params":{"name":"baseColor","type":2,"vertex":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"vertex","node":"oklabToRgb1","output":"rgb"}],"connection_points":{"in":[{"name":"vertex","type":"vec3"}],"out":[]}},"varyingRead1":{"type":"varyingRead","params":{"name":"baseColor","type":2},"connection_points":{"in":[],"out":[{"name":"fragment","type":"vec3"}]}},"oklabToRgb1":{"type":"oklabToRgb","params":{"oklab":{"overriden_options":{}}},"inputs":[{"index":0,"inputName":"oklab","node":"floatToVec3_1","output":"vec3"}]},"fitTo01_1":{"type":"fitTo01","params":{"val":{"type":"float","default_value":0,"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"srcMin":{"type":"float","default_value":0,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":-1},"srcMax":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"inputs":[{"index":0,"inputName":"val","node":"dot1","output":"val"}],"connection_points":{"in":[{"name":"val","type":"float"},{"name":"srcMin","type":"float"},{"name":"srcMax","type":"float"}],"out":[{"name":"val","type":"float"}]}}},"params":{"cursor":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"computeOnDirty":true,"cook":false,"dependentOnFoundNode":true},"overriden_options":{"callback":"{}"}}},"persisted_config":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-main","type":"MeshLambertMaterial","color":16777215,"emissive":0,"reflectivity":1,"refractionRatio":0.98,"blendColor":0,"fog":false},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false},"customMaterials":{"customDepthMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthMaterial","type":"MeshDepthMaterial","name":"customDepthMaterial","side":1,"blendColor":0,"depthPacking":3201},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDistanceMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDistanceMaterial","type":"MeshDistanceMaterial","name":"customDistanceMaterial","blendColor":0},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}},"customDepthDOFMaterial":{"material":{"metadata":{"version":4.6,"type":"Material","generator":"Material.toJSON"},"uuid":"/geo1/MAT/meshLambertBuilder_INSTANCES-customDepthDOFMaterial","type":"MeshDepthMaterial","name":"customDepthDOFMaterial","blendColor":0,"depthPacking":3200},"onBeforeCompileDataJSONWithoutShaders":{"paramConfigs":[{"type":"vector3","name":"cursor","defaultValue":[0,0,0],"uniformName":"v_POLY_param_cursor"}],"timeDependent":false,"resolutionDependent":false,"raymarchingLightsWorldCoordsDependent":false}}}}}}},"sphere1":{"type":"sphere","params":{"radius":0.16}},"actor_cursor_to_material":{"type":"actor","nodes":{"onTick1":{"type":"onTick"},"rayFromCursor1":{"type":"rayFromCursor"},"plane1":{"type":"plane"},"rayIntersectPlane1":{"type":"rayIntersectPlane","inputs":[{"index":0,"inputName":"Ray","node":"rayFromCursor1","output":"Ray"},{"index":1,"inputName":"Plane","node":"plane1","output":"Plane"}]},"setMaterialUniform1":{"type":"setMaterialUniform","params":{"type":5,"Vector3":{"type":"vector3","default_value":[0,0,0],"options":{"spare":true,"editable":false,"computeOnDirty":true,"dependentOnFoundParam":false}},"uniformName":{"type":"string","default_value":"","options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false},"raw_input":"cursor"},"lerp":{"type":"float","default_value":1,"options":{"spare":true,"editable":true,"computeOnDirty":true,"dependentOnFoundParam":false}}},"maxInputsCount":5,"inputs":[{"index":0,"inputName":"trigger","node":"onTick1","output":"trigger"},null,{"index":2,"inputName":"Vector3","node":"rayIntersectPlane1","output":"position"}],"connection_points":{"in":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Material","type":"Material","isArray":false},{"name":"Vector3","type":"Vector3","isArray":false},{"name":"uniformName","type":"string","isArray":false},{"name":"lerp","type":"float","isArray":false}],"out":[{"name":"trigger","type":"trigger","isArray":false},{"name":"Material","type":"Material","isArray":false},{"name":"Vector3","type":"Vector3","isArray":false},{"name":"uniformName","type":"string","isArray":false},{"name":"lerp","type":"float","isArray":false}]}}},"inputs":["instance1"],"flags":{"display":true},"persisted_config":{"variableNames":["VAR__plane1_normal","VAR__plane1__1","VAR__rayIntersectPlane1_","VAR__setMaterialUniform1_Vector3"],"variables":[{"type":"Vector3","data":[0,0,0]},{"type":"Plane","data":{"normal":[1,0,0],"constant":0}},{"type":"Vector3","data":[0,0,0]},{"type":"Vector3","data":[0,0,0]}],"functionNames":["globalsRayFromCursor","planeSet","rayIntersectPlane","globalsTime","globalsTimeDelta","setMaterialUniformVectorColor"],"serializedParamConfigs":[],"eventDatas":[{"type":"pointermove","emitter":"canvas","jsType":"rayFromCursor"},{"type":"touchmove","emitter":"canvas","jsType":"rayFromCursor"}]}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"COP":{"type":"copNetwork","nodes":{"envMap":{"type":"envMap","inputs":["imageEnv"]},"imageEnv":{"type":"imageEXR","params":{"tminFilter":true,"tmagFilter":true,"tanisotropy":true,"useRendererMaxAnisotropy":true}},"image1":{"type":"image"}}},"lights":{"type":"geo","nodes":{"hemisphereLight1":{"type":"hemisphereLight","params":{"intensity":0.52}},"spotLight1":{"type":"spotLight","params":{"decay":0.1,"distance":10,"castShadow":1}},"polarTransform1":{"type":"polarTransform","params":{"center":[0,0.7,0],"latitude":25.2,"depth":3},"inputs":["spotLight1"]},"merge1":{"type":"merge","inputs":["hemisphereLight1","polarTransform1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}},"cameras":{"type":"geo","nodes":{"perspectiveCamera1":{"type":"perspectiveCamera","params":{"position":[9.284955689069058,8.40661446997631,0.8031107798005633],"rotation":[-89.70195130016043,38.86689688152615,89.525038667217]}},"cameraControls1":{"type":"cameraControls","nodes":{"cameraOrbitControls1":{"type":"cameraOrbitControls","params":{"target":[0.0747668366743038,-3.0200473553475122,0.7469559701377474]}}},"params":{"node":"cameraOrbitControls1"},"inputs":["perspectiveCamera1"],"flags":{"display":true}}},"params":{"CADLinearTolerance":{"overriden_options":{"callback":"{}"}},"CADAngularTolerance":{"overriden_options":{"callback":"{}"}},"CADCurveAbscissa":{"overriden_options":{"callback":"{}"}},"CADCurveTolerance":{"overriden_options":{"callback":"{}"}},"CADDisplayEdges":{"overriden_options":{"callback":"{}"}},"CADEdgesColor":{"overriden_options":{"callback":"{}"}},"CADDisplayMeshes":{"overriden_options":{"callback":"{}"}},"CADMeshesColor":{"overriden_options":{"callback":"{}"}},"CADWireframe":{"overriden_options":{"callback":"{}"}},"CSGFacetAngle":{"overriden_options":{"callback":"{}"}},"CSGLinesColor":{"overriden_options":{"callback":"{}"}},"CSGMeshesColor":{"overriden_options":{"callback":"{}"}},"CSGWireframe":{"overriden_options":{"callback":"{}"}},"QUADTriangles":{"overriden_options":{"callback":"{}"}},"QUADWireframe":{"overriden_options":{"callback":"{}"}},"TetScale":{"overriden_options":{"callback":"{}"}},"TetDisplayLines":{"overriden_options":{"callback":"{}"}},"TetDisplaySharedFaces":{"overriden_options":{"callback":"{}"}},"TetDisplayPoints":{"overriden_options":{"callback":"{}"}},"TetDisplayCenter":{"overriden_options":{"callback":"{}"}},"TetDisplaySphere":{"overriden_options":{"callback":"{}"}}},"flags":{"display":true}}},"params":{"mainCameraPath":"/cameras/cameras:sopGroup/perspectiveCamera1"}},"ui":{"nodes":{"geo1":{"pos":[-50,-350],"selection":["MAT"],"nodes":{"plane1":{"pos":[200,250]},"instance1":{"pos":[-100,600]},"MAT":{"pos":[-350,600],"selection":["meshLambertBuilder_INSTANCES"],"nodes":{"meshLambertBuilder_INSTANCES":{"pos":[0,0],"nodes":{"instanceTransform1":{"pos":[-750,0]},"output1":{"pos":[550,0]},"globals1":{"pos":[-1200,-50]},"attribute1":{"pos":[-1200,350]},"param1":{"pos":[-1200,550]},"subtract1":{"pos":[-1000,450]},"normalize1":{"pos":[-850,450]},"dot1":{"pos":[-500,300]},"hsvToRgb1":{"pos":[50,300]},"floatToVec3_1":{"pos":[-100,300]},"varyingWrite1":{"pos":[200,300]},"varyingRead1":{"pos":[350,300]},"oklabToRgb1":{"pos":[50,450]},"fitTo01_1":{"pos":[-300,300]}}}}},"sphere1":{"pos":[-300,250]},"actor_cursor_to_material":{"pos":[-100,750],"selection":["onTick1"],"nodes":{"onTick1":{"pos":[-100,0]},"rayFromCursor1":{"pos":[-150,200]},"plane1":{"pos":[-150,350]},"rayIntersectPlane1":{"pos":[50,300]},"setMaterialUniform1":{"pos":[400,250]}}}}},"COP":{"pos":[-300,-50],"selection":["image1"],"nodes":{"envMap":{"pos":[50,250]},"imageEnv":{"pos":[50,100]},"image1":{"pos":[-200,100]}}},"lights":{"pos":[-50,-250],"selection":["hemisphereLight1"],"nodes":{"hemisphereLight1":{"pos":[50,-50]},"spotLight1":{"pos":[300,-50]},"polarTransform1":{"pos":[300,150]},"merge1":{"pos":[100,300]}}},"cameras":{"pos":[-50,-150],"nodes":{"perspectiveCamera1":{"pos":[0,-50]},"cameraControls1":{"pos":[0,150],"nodes":{"cameraOrbitControls1":{"pos":[0,0]}}}}}}},"shaders":{"/geo1/MAT/meshLambertBuilder_INSTANCES":{"vertex":"#define LAMBERT\nvarying vec3 vViewPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <envmap_pars_vertex>\n#include <color_pars_vertex>\n#include <fog_pars_vertex>\n#include <normal_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <shadowmap_pars_vertex>\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <color_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphcolor_vertex>\n\t#include <batching_vertex>\n// removed:\n//\t#include <beginnormal_vertex>\n\t#include <morphnormal_vertex>\n\t#include <skinbase_vertex>\n\t#include <skinnormal_vertex>\n\t#include <defaultnormal_vertex>\n\t#include <normal_vertex>\n// removed:\n//\t#include <begin_vertex>\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvViewPosition = - mvPosition.xyz;\n\t#include <worldpos_vertex>\n\t#include <envmap_vertex>\n\t#include <shadowmap_vertex>\n\t#include <fog_vertex>\n}","fragment":"#define LAMBERT\nuniform vec3 diffuse;\nuniform vec3 emissive;\nuniform float opacity;\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <dithering_pars_fragment>\n#include <color_pars_fragment>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <alphahash_pars_fragment>\n#include <aomap_pars_fragment>\n#include <lightmap_pars_fragment>\n#include <emissivemap_pars_fragment>\n#include <envmap_common_pars_fragment>\n#include <envmap_pars_fragment>\n#include <fog_pars_fragment>\n#include <bsdfs>\n#include <lights_pars_begin>\n#include <normal_pars_fragment>\n#include <lights_lambert_pars_fragment>\n#include <shadowmap_pars_fragment>\n#include <bumpmap_pars_fragment>\n#include <normalmap_pars_fragment>\n#include <specularmap_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\nvoid main() {\n\t#include <clipping_planes_fragment>\n\tvec4 diffuseColor = vec4( diffuse, opacity );\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\n\tvec3 totalEmissiveRadiance = emissive;\n\t#include <logdepthbuf_fragment>\n\t#include <map_fragment>\n\t#include <color_fragment>\n\t#include <alphamap_fragment>\n\t#include <alphatest_fragment>\n\t#include <alphahash_fragment>\n\t#include <specularmap_fragment>\n\t#include <normal_fragment_begin>\n\t#include <normal_fragment_maps>\n\t#include <emissivemap_fragment>\n\t#include <lights_lambert_fragment>\n\t#include <lights_fragment_begin>\n\t#include <lights_fragment_maps>\n\t#include <lights_fragment_end>\n\t#include <aomap_fragment>\n\tvec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + totalEmissiveRadiance;\n\t#include <envmap_fragment>\n\t#include <opaque_fragment>\n\t#include <tonemapping_fragment>\n\t#include <colorspace_fragment>\n\t#include <fog_fragment>\n\t#include <premultiplied_alpha_fragment>\n\t#include <dithering_fragment>\n}","customDepthMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n","customDistanceMaterial.vertex":"#define DISTANCE\nvarying vec3 vWorldPosition;\n#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <clipping_planes_pars_vertex>\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <worldpos_vertex>\n\t#include <clipping_planes_vertex>\n\tvWorldPosition = worldPosition.xyz;\n}","customDistanceMaterial.fragment":"\n// INSERT DEFINES\n\n#define DISTANCE\n\nuniform vec3 referencePosition;\nuniform float nearDistance;\nuniform float farDistance;\nvarying vec3 vWorldPosition;\n\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvoid main () {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\n\t// INSERT BODY\n\n\t#include <alphatest_fragment>\n\n\tfloat dist = length( vWorldPosition - referencePosition );\n\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\n\tdist = saturate( dist ); // clamp to [ 0, 1 ]\n\n\tgl_FragColor = packDepthToRGBA( dist );\n\n}\n","customDepthDOFMaterial.vertex":"#include <common>\n#include <batching_pars_vertex>\n#include <uv_pars_vertex>\n#include <displacementmap_pars_vertex>\n#include <morphtarget_pars_vertex>\n#include <skinning_pars_vertex>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\n\n// https://stackoverflow.com/questions/23793698/how-to-implement-slerp-in-glsl-hlsl\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t)\n// {\n// \tfloat dotp = dot(normalize(p0), normalize(p1));\n// \tif ((dotp > 0.9999) || (dotp < -0.9999))\n// \t{\n// \t\tif (t<=0.5)\n// \t\t\treturn p0;\n// \t\treturn p1;\n// \t}\n// \tfloat theta = acos(dotp);\n// \tvec4 P = ((p0*sin((1.0-t)*theta) + p1*sin(t*theta)) / sin(theta));\n// \tP.w = 1.0;\n// \treturn P;\n// }\n\n// https://devcry.heiho.net/html/2017/20170521-slerp.html\n// float lerp(float a, float b, float t) {\n// \treturn (1.0 - t) * a + t * b;\n// }\n// vec4 quatSlerp(vec4 p0, vec4 p1, float t){\n// \tvec4 qb = p1;\n\n// \t// cos(a) = dot product\n// \tfloat cos_a = p0.x * qb.x + p0.y * qb.y + p0.z * qb.z + p0.w * qb.w;\n// \tif (cos_a < 0.0f) {\n// \t\tcos_a = -cos_a;\n// \t\tqb = -qb;\n// \t}\n\n// \t// close to zero, cos(a) ~= 1\n// \t// do linear interpolation\n// \tif (cos_a > 0.999) {\n// \t\treturn vec4(\n// \t\t\tlerp(p0.x, qb.x, t),\n// \t\t\tlerp(p0.y, qb.y, t),\n// \t\t\tlerp(p0.z, qb.z, t),\n// \t\t\tlerp(p0.w, qb.w, t)\n// \t\t);\n// \t}\n\n// \tfloat alpha = acos(cos_a);\n// \treturn (p0 * sin(1.0 - t) + p1 * sin(t * alpha)) / sin(alpha);\n// }\n\n// https://stackoverflow.com/questions/62943083/interpolate-between-two-quaternions-the-long-way\nvec4 quatSlerp(vec4 q1, vec4 q2, float t){\n\tfloat angle = acos(dot(q1, q2));\n\tfloat denom = sin(angle);\n\t//check if denom is zero\n\treturn (q1*sin((1.0-t)*angle)+q2*sin(t*angle))/denom;\n}\n// TO CHECK:\n// this page https://www.reddit.com/r/opengl/comments/704la7/glsl_quaternion_library/\n// has a link to a potentially nice pdf:\n// http://web.mit.edu/2.998/www/QuaternionReport1.pdf\n\n// https://github.com/mattatz/ShibuyaCrowd/blob/master/source/shaders/common/quaternion.glsl\nvec4 quatMult(vec4 q1, vec4 q2)\n{\n\treturn vec4(\n\tq1.w * q2.x + q1.x * q2.w + q1.z * q2.y - q1.y * q2.z,\n\tq1.w * q2.y + q1.y * q2.w + q1.x * q2.z - q1.z * q2.x,\n\tq1.w * q2.z + q1.z * q2.w + q1.y * q2.x - q1.x * q2.y,\n\tq1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z\n\t);\n}\n// http://glmatrix.net/docs/quat.js.html#line97\n// let ax = a[0], ay = a[1], az = a[2], aw = a[3];\n\n// let bx = b[0], by = b[1], bz = b[2], bw = b[3];\n\n// out[0] = ax * bw + aw * bx + ay * bz - az * by;\n\n// out[1] = ay * bw + aw * by + az * bx - ax * bz;\n\n// out[2] = az * bw + aw * bz + ax * by - ay * bx;\n\n// out[3] = aw * bw - ax * bx - ay * by - az * bz;\n\n// return out\n\n\n\n// http://www.neilmendoza.com/glsl-rotation-about-an-arbitrary-axis/\nmat4 rotationMatrix(vec3 axis, float angle)\n{\n\taxis = normalize(axis);\n\tfloat s = sin(angle);\n\tfloat c = cos(angle);\n\tfloat oc = 1.0 - c;\n\n \treturn mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0, oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0, oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0, 0.0, 0.0, 0.0, 1.0);\n}\n\n// https://www.geeks3d.com/20141201/how-to-rotate-a-vertex-by-a-quaternion-in-glsl/\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n\tvec4 qr;\n\tfloat half_angle = (angle * 0.5); // * 3.14159 / 180.0;\n\tfloat sin_half_angle = sin(half_angle);\n\tqr.x = axis.x * sin_half_angle;\n\tqr.y = axis.y * sin_half_angle;\n\tqr.z = axis.z * sin_half_angle;\n\tqr.w = cos(half_angle);\n\treturn qr;\n}\nvec3 rotateWithAxisAngle(vec3 position, vec3 axis, float angle)\n{\n\tvec4 q = quatFromAxisAngle(axis, angle);\n\tvec3 v = position.xyz;\n\treturn v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n// vec3 applyQuaternionToVector( vec4 q, vec3 v ){\n// \treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n// }\nvec3 rotateWithQuat( vec3 v, vec4 q )\n{\n\t// vec4 qv = multQuat( quat, vec4(vec, 0.0) );\n\t// return multQuat( qv, vec4(-quat.x, -quat.y, -quat.z, quat.w) ).xyz;\n\treturn v + 2.0 * cross( q.xyz, cross( q.xyz, v ) + q.w * v );\n}\n// https://github.com/glslify/glsl-look-at/blob/gh-pages/index.glsl\n// mat3 rotation_matrix(vec3 origin, vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target - origin);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n// mat3 rotation_matrix(vec3 target, float roll) {\n// \tvec3 rr = vec3(sin(roll), cos(roll), 0.0);\n// \tvec3 ww = normalize(target);\n// \tvec3 uu = normalize(cross(ww, rr));\n// \tvec3 vv = normalize(cross(uu, ww));\n\n// \treturn mat3(uu, vv, ww);\n// }\n\nfloat vectorAngle(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 c1 = cross(start, dest);\n\t// We use the dot product of the cross with the Y axis.\n\t// This is a little arbitrary, but can still give a good sense of direction\n\tvec3 y_axis = vec3(0.0, 1.0, 0.0);\n\tfloat d1 = dot(c1, y_axis);\n\tfloat angle = acos(cosTheta) * sign(d1);\n\treturn angle;\n}\n\n// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/#i-need-an-equivalent-of-glulookat-how-do-i-orient-an-object-towards-a-point-\nvec4 vectorAlign(vec3 start, vec3 dest){\n\tstart = normalize(start);\n\tdest = normalize(dest);\n\n\tfloat cosTheta = dot(start, dest);\n\tvec3 axis;\n\n\t// if (cosTheta < -1 + 0.001f){\n\t// \t// special case when vectors in opposite directions:\n\t// \t// there is no ideal rotation axis\n\t// \t// So guess one; any will do as long as it's perpendicular to start\n\t// \taxis = cross(vec3(0.0f, 0.0f, 1.0f), start);\n\t// \tif (length2(axis) < 0.01 ) // bad luck, they were parallel, try again!\n\t// \t\taxis = cross(vec3(1.0f, 0.0f, 0.0f), start);\n\n\t// \taxis = normalize(axis);\n\t// \treturn gtx::quaternion::angleAxis(glm::radians(180.0f), axis);\n\t// }\n\tif(cosTheta > (1.0 - 0.0001) || cosTheta < (-1.0 + 0.0001) ){\n\t\taxis = normalize(cross(start, vec3(0.0, 1.0, 0.0)));\n\t\tif (length(axis) < 0.001 ){ // bad luck, they were parallel, try again!\n\t\t\taxis = normalize(cross(start, vec3(1.0, 0.0, 0.0)));\n\t\t}\n\t} else {\n\t\taxis = normalize(cross(start, dest));\n\t}\n\n\tfloat angle = acos(cosTheta);\n\n\treturn quatFromAxisAngle(axis, angle);\n}\nvec4 vectorAlignWithUp(vec3 start, vec3 dest, vec3 up){\n\tvec4 rot1 = vectorAlign(start, dest);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\t// vec3 right = normalize(cross(dest, up));\n\t// up = normalize(cross(right, dest));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(vec3(0.0, 1.0, 0.0), rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(up, newUp);\n\n\t// return rot1;\n\treturn rot2;\n\t// return multQuat(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// https://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\nfloat quatToAngle(vec4 q){\n\treturn 2.0 * acos(q.w);\n}\nvec3 quatToAxis(vec4 q){\n\treturn vec3(\n\t\tq.x / sqrt(1.0-q.w*q.w),\n\t\tq.y / sqrt(1.0-q.w*q.w),\n\t\tq.z / sqrt(1.0-q.w*q.w)\n\t);\n}\n\nvec4 align(vec3 dir, vec3 up){\n\tvec3 start_dir = vec3(0.0, 0.0, 1.0);\n\tvec3 start_up = vec3(0.0, 1.0, 0.0);\n\tvec4 rot1 = vectorAlign(start_dir, dir);\n\tup = normalize(up);\n\n\t// Recompute desiredUp so that it's perpendicular to the direction\n\t// You can skip that part if you really want to force desiredUp\n\tvec3 right = normalize(cross(dir, up));\n\tif(length(right)<0.001){\n\t\tright = vec3(1.0, 0.0, 0.0);\n\t}\n\tup = normalize(cross(right, dir));\n\n\t// Because of the 1rst rotation, the up is probably completely screwed up.\n\t// Find the rotation between the up of the rotated object, and the desired up\n\tvec3 newUp = rotateWithQuat(start_up, rot1);//rot1 * vec3(0.0, 1.0, 0.0);\n\tvec4 rot2 = vectorAlign(normalize(newUp), up);\n\n\t// return rot1;\n\treturn quatMult(rot1, rot2);\n\t// return rot2 * rot1;\n\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n//\n//\n// FIT\n//\n//\nfloat fit(float val, float srcMin, float srcMax, float destMin, float destMax){\n\tfloat src_range = srcMax - srcMin;\n\tfloat dest_range = destMax - destMin;\n\n\tfloat r = (val - srcMin) / src_range;\n\treturn (r * dest_range) + destMin;\n}\nvec2 fit(vec2 val, vec2 srcMin, vec2 srcMax, vec2 destMin, vec2 destMax){\n\treturn vec2(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y)\n\t);\n}\nvec3 fit(vec3 val, vec3 srcMin, vec3 srcMax, vec3 destMin, vec3 destMax){\n\treturn vec3(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z)\n\t);\n}\nvec4 fit(vec4 val, vec4 srcMin, vec4 srcMax, vec4 destMin, vec4 destMax){\n\treturn vec4(\n\t\tfit(val.x, srcMin.x, srcMax.x, destMin.x, destMax.x),\n\t\tfit(val.y, srcMin.y, srcMax.y, destMin.y, destMax.y),\n\t\tfit(val.z, srcMin.z, srcMax.z, destMin.z, destMax.z),\n\t\tfit(val.w, srcMin.w, srcMax.w, destMin.w, destMax.w)\n\t);\n}\n\n//\n//\n// FIT TO 01\n// fits the range [srcMin, srcMax] to [0, 1]\n//\nfloat fitTo01(float val, float srcMin, float srcMax){\n\tfloat size = srcMax - srcMin;\n\treturn (val - srcMin) / size;\n}\nvec2 fitTo01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitTo01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitTo01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitTo01(val.x, srcMin.x, srcMax.x),\n\t\tfitTo01(val.y, srcMin.y, srcMax.y),\n\t\tfitTo01(val.z, srcMin.z, srcMax.z),\n\t\tfitTo01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01\n// fits the range [0, 1] to [destMin, destMax]\n//\nfloat fitFrom01(float val, float destMin, float destMax){\n\treturn fit(val, 0.0, 1.0, destMin, destMax);\n}\nvec2 fitFrom01(vec2 val, vec2 srcMin, vec2 srcMax){\n\treturn vec2(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y)\n\t);\n}\nvec3 fitFrom01(vec3 val, vec3 srcMin, vec3 srcMax){\n\treturn vec3(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z)\n\t);\n}\nvec4 fitFrom01(vec4 val, vec4 srcMin, vec4 srcMax){\n\treturn vec4(\n\t\tfitFrom01(val.x, srcMin.x, srcMax.x),\n\t\tfitFrom01(val.y, srcMin.y, srcMax.y),\n\t\tfitFrom01(val.z, srcMin.z, srcMax.z),\n\t\tfitFrom01(val.w, srcMin.w, srcMax.w)\n\t);\n}\n\n//\n//\n// FIT FROM 01 TO VARIANCE\n// fits the range [0, 1] to [center - variance, center + variance]\n//\nfloat fitFrom01ToVariance(float val, float center, float variance){\n\treturn fitFrom01(val, center - variance, center + variance);\n}\nvec2 fitFrom01ToVariance(vec2 val, vec2 center, vec2 variance){\n\treturn vec2(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y)\n\t);\n}\nvec3 fitFrom01ToVariance(vec3 val, vec3 center, vec3 variance){\n\treturn vec3(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z)\n\t);\n}\nvec4 fitFrom01ToVariance(vec4 val, vec4 center, vec4 variance){\n\treturn vec4(\n\t\tfitFrom01ToVariance(val.x, center.x, variance.x),\n\t\tfitFrom01ToVariance(val.y, center.y, variance.y),\n\t\tfitFrom01ToVariance(val.z, center.z, variance.z),\n\t\tfitFrom01ToVariance(val.w, center.w, variance.w)\n\t);\n}\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n//////////////////////////////////////////////////////////////////////\n//\n// Visualizing Björn Ottosson's \"oklab\" colorspace\n//\n// shadertoy implementation by mattz\n//\n// license CC0 (public domain)\n// https://creativecommons.org/share-your-work/public-domain/cc0/\n//\n// Click and drag to set lightness (mouse x) and chroma (mouse y).\n// Hue varies linearly across the image from left to right.\n//\n// While mouse is down, plotted curves show oklab components\n// L (red), a (green), and b (blue). \n//\n// To test the inverse mapping, the plotted curves are generated\n// by mapping the (pre-clipping) linear RGB color back to oklab \n// space.\n//\n// White bars on top of the image (and black bars on the bottom of\n// the image) indicate clipping when one or more of the R, G, B \n// components are greater than 1.0 (or less than 0.0 respectively).\n//\n// The color accompanying the black/white bar shows which channels\n// are out of gamut.\n//\n// Click in the bottom left to reset the view.\n//\n// Hit the 'G' key to toggle displaying a gamut test:\n//\n// * black pixels indicate that RGB values for some hues\n// were clipped to 0 at the given lightness/chroma pair.\n//\n// * white pixels indicate that RGB values for some hues\n// were clipped to 1 at the given lightness/chroma pair\n//\n// * gray pixels indicate that both types of clipping happened\n//\n// Hit the 'U' key to display a uniform sampling of linear sRGB \n// space, converted into oklab lightness (x position) and chroma\n// (y position) coordinates. If you mouse over a colored dot, the\n// spectrum on screen should include that exact color.\n//\n//////////////////////////////////////////////////////////////////////\n\n//////////////////////////////////////////////////////////////////////\n// sRGB color transform and inverse from \n// https://bottosson.github.io/posts/colorwrong/#what-can-we-do%3F\n\nvec3 srgb_from_linear_srgb(vec3 x) {\n\n vec3 xlo = 12.92*x;\n vec3 xhi = 1.055 * pow(x, vec3(0.4166666666666667)) - 0.055;\n \n return mix(xlo, xhi, step(vec3(0.0031308), x));\n\n}\n\nvec3 linear_srgb_from_srgb(vec3 x) {\n\n vec3 xlo = x / 12.92;\n vec3 xhi = pow((x + 0.055)/(1.055), vec3(2.4));\n \n return mix(xlo, xhi, step(vec3(0.04045), x));\n\n}\n\n//////////////////////////////////////////////////////////////////////\n// oklab transform and inverse from\n// https://bottosson.github.io/posts/oklab/\n\n\nconst mat3 fwdA = mat3(1.0, 1.0, 1.0,\n 0.3963377774, -0.1055613458, -0.0894841775,\n 0.2158037573, -0.0638541728, -1.2914855480);\n \nconst mat3 fwdB = mat3(4.0767245293, -1.2681437731, -0.0041119885,\n -3.3072168827, 2.6093323231, -0.7034763098,\n 0.2307590544, -0.3411344290, 1.7068625689);\n\nconst mat3 invB = mat3(0.4121656120, 0.2118591070, 0.0883097947,\n 0.5362752080, 0.6807189584, 0.2818474174,\n 0.0514575653, 0.1074065790, 0.6302613616);\n \nconst mat3 invA = mat3(0.2104542553, 1.9779984951, 0.0259040371,\n 0.7936177850, -2.4285922050, 0.7827717662,\n -0.0040720468, 0.4505937099, -0.8086757660);\n\nvec3 oklab_from_linear_srgb(vec3 c) {\n\n vec3 lms = invB * c;\n \n return invA * (sign(lms)*pow(abs(lms), vec3(0.3333333333333)));\n \n}\n\nvec3 linear_srgb_from_oklab(vec3 c) {\n\n vec3 lms = fwdA * c;\n \n return fwdB * (lms * lms * lms);\n \n}\n\n\n// https://www.shadertoy.com/view/WtccD7\nconst float max_chroma = 0.33;\nvec3 uvToOklab(vec3 uvw){\n\n // setup oklab color\n float theta = 2.*3.141592653589793*uvw.x;\n \n float L = 0.8;\n float chroma = 0.1;\n \n //if (max(iMouse.x, iMouse.y) > 0.05 * iResolution.y) {\n L = uvw.y;//iMouse.x / iResolution.x;\n chroma = uvw.z * max_chroma;// / iResolution.y;\n //}\n \n float a = chroma*cos(theta);\n float b = chroma*sin(theta);\n \n vec3 lab = vec3(L, a, b);\n\treturn lab;\n\n // convert to rgb \n // vec3 rgb = linear_srgb_from_oklab(lab);\n\n}\n\n\n\n\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\nuniform vec3 v_POLY_param_cursor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\nvarying vec3 baseColor;\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\nattribute vec3 instancePosition;\nattribute vec4 instanceQuaternion;\nattribute vec3 instanceScale;\n\n\n\n\n#include <logdepthbuf_pars_vertex>\n#include <clipping_planes_pars_vertex>\nvarying vec2 vHighPrecisionZW;\nvoid main() {\n\t#include <uv_vertex>\n\t#include <batching_vertex>\n\t#include <skinbase_vertex>\n\t#ifdef USE_DISPLACEMENTMAP\n// removed:\n//\t\t#include <beginnormal_vertex>\n\t\t#include <morphnormal_vertex>\n\t\t#include <skinnormal_vertex>\n\t#endif\n// removed:\n//\t#include <begin_vertex>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/instanceTransform1\n\tvec3 v_POLY_instanceTransform1_position = vec3(position);\n\tv_POLY_instanceTransform1_position *= instanceScale;\n\tv_POLY_instanceTransform1_position = rotateWithQuat( v_POLY_instanceTransform1_position, instanceQuaternion );\n\tv_POLY_instanceTransform1_position += instancePosition;\n\tvec3 v_POLY_instanceTransform1_normal = vec3(normal);\n\tv_POLY_instanceTransform1_normal = rotateWithQuat( v_POLY_instanceTransform1_normal, instanceQuaternion );\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/attribute1\n\tvec3 v_POLY_attribute1_val = instancePosition;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/param1\n\tvec3 v_POLY_param1_val = v_POLY_param_cursor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tvec3 transformed = v_POLY_instanceTransform1_position;\n\tvec3 objectNormal = v_POLY_instanceTransform1_normal;\n\t#ifdef USE_TANGENT\n\t\tvec3 objectTangent = vec3( tangent.xyz );\n\t#endif\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/subtract1\n\tvec3 v_POLY_subtract1_subtract = (v_POLY_attribute1_val - v_POLY_param1_val - vec3(0.0, 0.0, 0.0));\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/normalize1\n\tvec3 v_POLY_normalize1_normalized = normalize(v_POLY_subtract1_subtract);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/dot1\n\tfloat v_POLY_dot1_val = dot(v_POLY_instanceTransform1_normal, v_POLY_normalize1_normalized);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/fitTo01_1\n\tfloat v_POLY_fitTo01_1_val = fitTo01(v_POLY_dot1_val, -1.0, 1.0);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/floatToVec3_1\n\tvec3 v_POLY_floatToVec3_1_vec3 = vec3(v_POLY_fitTo01_1_val, 0.73, 0.79);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/oklabToRgb1\n\tvec3 v_POLY_oklabToRgb1_rgb = linear_srgb_from_oklab(v_POLY_floatToVec3_1_vec3);\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingWrite1\n\tbaseColor = v_POLY_oklabToRgb1_rgb;\n\n\n\n\t#include <morphtarget_vertex>\n\t#include <skinning_vertex>\n\t#include <displacementmap_vertex>\n\t#include <project_vertex>\n\t#include <logdepthbuf_vertex>\n\t#include <clipping_planes_vertex>\n\tvHighPrecisionZW = gl_Position.zw;\n}","customDepthDOFMaterial.fragment":"\n// INSERT DEFINES\n\n\n#if DEPTH_PACKING == 3200\n\n\tuniform float opacity;\n\n#endif\n\n#include <common>\n\n\n\n// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\nvarying vec3 baseColor;\n\n\n\n\n#include <packing>\n#include <uv_pars_fragment>\n#include <map_pars_fragment>\n#include <alphamap_pars_fragment>\n#include <alphatest_pars_fragment>\n#include <logdepthbuf_pars_fragment>\n#include <clipping_planes_pars_fragment>\n\nvarying vec2 vHighPrecisionZW;\n\nvoid main() {\n\n\t#include <clipping_planes_fragment>\n\n\tvec4 diffuseColor = vec4( 1.0 );\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tdiffuseColor.a = opacity;\n\n\t#endif\n\n\n\t#include <map_fragment>\n\t#include <alphamap_fragment>\n\n\n\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/varyingRead1\n\tvec3 v_POLY_varyingRead1_fragment = baseColor;\n\t\n\t// /geo1/MAT/meshLambertBuilder_INSTANCES/output1\n\tdiffuseColor.xyz = v_POLY_varyingRead1_fragment;\n\n\n\n\n\t// INSERT BODY\n\t// the new body lines should be added before the alphatest_fragment\n\t// so that alpha is set before (which is really how it would be set if the alphamap_fragment above was used by the material node parameters)\n\n\t#include <alphatest_fragment>\n\n\t#include <logdepthbuf_fragment>\n\n\n\t// Higher precision equivalent of gl_FragCoord.z. This assumes depthRange has been left to its default values.\n\tfloat fragCoordZ = 0.5 * vHighPrecisionZW[0] / vHighPrecisionZW[1] + 0.5;\n\n\t#if DEPTH_PACKING == 3200\n\n\t\tgl_FragColor = vec4( vec3( 1.0 - fragCoordZ ), diffuseColor.a );\n\n\t#elif DEPTH_PACKING == 3201\n\n\t\tgl_FragColor = packDepthToRGBA( fragCoordZ );\n\n\t#endif\n\n}\n"}},"jsFunctionBodies":{"/geo1/actor_cursor_to_material":"// insert defines\nclass CustomActorEvaluator extends ActorEvaluator {\n\t// insert members\n\n\t// /geo1/actor_cursor_to_material/rayFromCursor1\n\tv_POLY_rayFromCursor1_Ray = computed(() => globalsRayFromCursor());\n\n\t// /geo1/actor_cursor_to_material/plane1\n\tv_POLY_plane1_Plane = computed(() => planeSet(VAR__plane1_normal.set(0, 1, 0), 0.0, VAR__plane1__1));\n\n\t// /geo1/actor_cursor_to_material/rayIntersectPlane1\n\tv_POLY_rayIntersectPlane1_position = computed(() =>\n\t\trayIntersectPlane(this.v_POLY_rayFromCursor1_Ray.value, this.v_POLY_plane1_Plane.value, VAR__rayIntersectPlane1_)\n\t);\n\n\t// /geo1/actor_cursor_to_material/onTick1\n\tv_POLY_onTick1_time = computed(() => globalsTime());\n\tv_POLY_onTick1_delta = computed(() => globalsTimeDelta());\n\n\tconstructor(node, object3D) {\n\t\tsuper(node, object3D);\n\t\t// insert after constructor\n\t}\n\t// insert body\n\n\tonTick() {\n\t\tthis.onTick1();\n\t}\n\t// /geo1/actor_cursor_to_material/onTick1\n\tonTick1() {\n\t\tthis.setMaterialUniform1(0);\n\t}\n\n\t// /geo1/actor_cursor_to_material/setMaterialUniform1\n\tsetMaterialUniform1() {\n\t\tsetMaterialUniformVectorColor(\n\t\t\tthis.object3D.material,\n\t\t\t\"cursor\",\n\t\t\tVAR__setMaterialUniform1_Vector3.copy(this.v_POLY_rayIntersectPlane1_position.value),\n\t\t\t1.0,\n\t\t\ttrue,\n\t\t\ttrue\n\t\t);\n\t}\n}\nreturn CustomActorEvaluator;\n"}}
Code editor
{"multiple_panel":{"split_ratio":0.5,"split_panel0":{"split_ratio":0.5543217692883486,"split_panel0":{"panelTypes":["viewer"],"currentPanelIndex":0,"panel_data":{"camera":"/cameras/cameras:sopGroup/perspectiveCamera1","isViewerInitLayoutData":true,"linkIndex":1,"overlayedNetwork":{"allowed":false,"displayed":false}}},"split_panel1":{"panelTypes":["params"],"currentPanelIndex":0,"panel_data":{"active_folder":756,"linkIndex":1}},"split_mode":"vertical"},"split_panel1":{"panelTypes":["network","params","viewer"],"currentPanelIndex":0,"panel_data":{"camera":{"position":{"x":0,"y":-50},"zoom":1.0222221069335933},"history":{"2":{"position":{"x":-88.10665897762269,"y":215.33224154945745},"zoom":1.0222221069335933},"36":{"position":{"x":90.30982638039622,"y":-535.6795413493485},"zoom":0.9522221069335932},"295":{"position":{"x":0,"y":0},"zoom":0.43527473192321764},"327":{"position":{"x":319.5062368914969,"y":-271.48266090331725},"zoom":0.43527473192321764},"1160":{"position":{"x":-31.304351356665407,"y":5.869565879374764},"zoom":1.0222221069335933},"1163":{"position":{"x":319.5062368914969,"y":-271.48266090331725},"zoom":0.43527473192321764},"1431":{"position":{"x":-182.55542984590875,"y":-86.75613047118728},"zoom":0.9522221069335932}},"paramsDisplayed":false,"linkIndex":1}},"split_mode":"horizontal"},"currentNodes":["/cameras","/","/","/","/","/","/","/"],"navigationHistory":{"nodePaths":{"1":["/","/geo1","/","/geo1","/geo1/MAT","/geo1","/","/geo1","/geo1/MAT","/geo1/MAT/meshLambertBuilder_INSTANCES","/geo1/MAT","/geo1","/geo1/actor_cursor_to_material","/geo1","/geo1/MAT","/geo1/MAT/meshLambertBuilder_INSTANCES","/geo1/MAT","/geo1","/","/cameras"],"2":["/"],"3":["/"],"4":["/"],"5":["/"],"6":["/"],"7":["/"],"8":["/"]},"index":{"1":19,"2":0,"3":0,"4":0,"5":0,"6":0,"7":0,"8":0}},"fullscreenPanelId":null,"saveOptions":{"checkRemoteAssetsUse":true,"minimizeFilesCount":false},"paramsModal":[]}
Used nodes
cop/envMap;cop/image;cop/imageEXR;event/cameraOrbitControls;mat/meshLambertBuilder;obj/copNetwork;obj/geo;sop/actor;sop/cameraControls;sop/hemisphereLight;sop/instance;sop/materialsNetwork;sop/merge;sop/perspectiveCamera;sop/plane;sop/polarTransform;sop/sphere;sop/spotLight
Used operations
Used modules
Used assemblers
GL_MESH_LAMBERT;JS_ACTOR
Used integrations
[]
Used assets
Nodes map
{"/geo1":"obj/geo","/geo1/plane1":"sop/plane","/geo1/instance1":"sop/instance","/geo1/MAT":"sop/materialsNetwork","/geo1/MAT/meshLambertBuilder_INSTANCES":"mat/meshLambertBuilder","/geo1/sphere1":"sop/sphere","/geo1/actor_cursor_to_material":"sop/actor","/COP":"obj/copNetwork","/COP/envMap":"cop/envMap","/COP/imageEnv":"cop/imageEXR","/COP/image1":"cop/image","/lights":"obj/geo","/lights/hemisphereLight1":"sop/hemisphereLight","/lights/spotLight1":"sop/spotLight","/lights/polarTransform1":"sop/polarTransform","/lights/merge1":"sop/merge","/cameras":"obj/geo","/cameras/perspectiveCamera1":"sop/perspectiveCamera","/cameras/cameraControls1":"sop/cameraControls","/cameras/cameraControls1/cameraOrbitControls1":"event/cameraOrbitControls"}
Js version
Editor version
Engine version
Logout
0%
There was a problem displaying your scene:
view scene source